前言

plt.contour是python中用于画等高线的函数,这里介绍一下plt.contour的使用。

使用示例

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-3, 3, 50)  # 生成连续数据
y = np.linspace(-3, 3, 50)  # 生成连续数据
X, Y = np.meshgrid(x, y)    
# 生成能够在坐标系中形成点阵的数组,这个可以去参考一下别的文章
# https://lixiaoqian.blog.csdn.net/article/details/81532855 这里讲的比较详细
Z = X**2   Y**2     # 这里将高度设置为x^2 y^2,就能画一个圆形的等高线
C=plt.contour(x, y,Z,[2,5,8,10])  # 画等高线 # 使用plt.contour(X, Y,Z,[2,5,8,10])也是没问题的
plt.clabel(C, inline=True, fontsize=10)

画出来的效果就是:

plt.contour()函数本身

plt.contour(X, Y, Z, [levels], **kwargs)

  • plt就是matplotlib.pyplot
  • X, Y表示的是坐标位置(这里是可选的,但是如果不传入的话就是python根据传入的高度数组(Z)的大小自动生成的坐标),一般很多会使用二维数组,但是实际上一维数组也可以的
  • Z代表每个坐标对应的高度值,是一个二维数组,其中每个值表示的是每个坐标对应的高度 XYZ的实际数据构成可以参照上面的例子,在本地查看一下数据是长什么样
  • levels有两种传入形式。一种是传入一个整数,这个整数表示你想绘制的等高线的条数,但是显示结果可能并不是完全和传入的整数的条数一样,是大致差不多的条数(可能相差一两条)(为什么是大致条数呢?可能是python帮你默认生成的比较合适的几条等高线吧)。还有一种方式就是传入一个包含高度值的一维数组,这样python便会画出传入的高度值对应的等高线。
  • 其余的参数cmap, linewidths, linestyles等这里就不多介绍了

plt.contour()图中的坐标

由于一开始这里很混淆,因此在这里对坐标代表的内容进行一个解释。要解释这个问题,首先可以引入实际问题,比如一座山,一般来说从飞机上或者很高的地方观察这座山的话能看到这座山就像圆一样,如果抽象成平面的话就成为一个圆了(这里是指比较规整的山啊)。然后实际上等高线就是从这样很高的地方去想象的,通过一系列工具把相同高度的位置在一个平面上标注出来,相同高度的位置通过线连起来就形成了等高线。

如果把刚刚说的圆放在坐标系中,那么某个坐标(x,y)就表示观察到的这座山在平面视角来看所展现出来的位置,如下图:

左边假设是一座山,上面的红色的点在平面视角来看的话就成为坐标系中的一个位置,此时高度已经在等高线图中反映不出来了,这也是为什么等高线的图需要标注高度值。

这里结合三维图来看会更加直观:将上面的圆形的等高线图的高度用三维图像展示出来,使用代码为:

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

x = np.linspace(-3, 3, 50)
y = np.linspace(-3, 3, 50)
X, Y = np.meshgrid(x, y)
Z = X**2   Y**2 
C=plt.contour(x, y,Z,[2,5,8,10])
plt.clabel(C, inline=True, fontsize=10)

fig=plt.figure()
fig = plt.figure(figsize=(10,10))
ax1 = plt.axes(projection='3d')

ax1.scatter3D(X,Y,z, cmap='Blues')

效果如下:

图中X,Y,Z都分别被转换为了三维坐标系中的坐标,形成了一个类似球形的一个部分的高度图。Z轴就是每个点对应的高度值,这里试想如果把整张图从最顶部投下到xy二维坐标系中,如果取开始的某几个固定的高度值(如2,5,8),那么这几个固定的高度值所对应的坐标在二维坐标系中连起来的话就成为了一条等高线。

这里可以多看几个例子:

x = np.linspace(-3, 3, 50)
y = np.linspace(-3, 3, 50)
X, Y = np.meshgrid(x, y)
z = (np.exp(-X**2 - Y**2) - np.exp(-(X - 1)**2 - (Y - 1)**2))*2

fig=plt.figure()
fig = plt.figure(figsize=(10,10))
ax1 = plt.axes(projection='3d')
ax1.scatter3D(X,Y,z, cmap='Blues')

效果:

其二维图为:

叮!

不学不知道,学了才知道什么都不是想象的那么简单啊。

补充:plt.contour等高线绘制

import numpy as np
import matplotlib.pyplot as plt
 
 
def height(x, y):
    return (1 - x / 2   x ** 5   y ** 3) * np.exp(-x ** 2 - y ** 2)
 
 
x = np.linspace(-3, 3, 300)
y = np.linspace(-3, 3, 300)
X, Y = np.meshgrid(x, y)
# 为等高线填充颜色 10表示按照高度分成10层
plt.contourf(X, Y, height(X, Y), 10, alpha=0.75, cmap=plt.cm.hot)
C = plt.contour(X, Y, height(X, Y), 10, colors='black')
# 绘制等高线标签
plt.clabel(C, inline=True, fontsize=10)
# 去掉坐标轴刻度
# plt.xticks(())
# plt.yticks(())
plt.show()
# 显示图片

参考:https://blog.csdn.net/qq_42505705/article/details/88771942

总结

到此这篇关于python作图基础之plt.contour的文章就介绍到这了,更多相关python作图plt.contour内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python作图基础之plt.contour实例详解的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部