我们知道为了提高代码的运行速度,我们需要对书写的python代码进行性能测试,而代码性能的高低的直接反馈是电脑运行代码所需要的时间。

这里将介绍四种常用的测试代码运行速度的方法。

第一种

使用time模块对代码的运行时间进行统计,代码如下:

import time


class Debug:
    def mainProgram(self):
        start_time = time.time()
        for i in range(100):
            print(i)
        end_time = time.time()
        print(f"the running time is: {end_time - start_time} s")
        

if __name__ == "__main__":
    main = Debug()
    main.mainProgram()

我们采用time 模块给所要测试的代码的前后加上时间戳,一个记为start_time,一个记作end_time,最后代码块的运行时间为end_time-start_time,单位为s(秒)。

当然在python中还有许多的记录时间的模块,这里不做过多讨论,均类似于time模块,实现思路上一致,代码实现上大同小异。

第二种

使用IPython的Built-in magic commands,%time,代码如下:

class Debug:
    def mainProgram(self):
        %time for i in range(100): print(i)
        

main = Debug()
main.mainProgram()
"""
Wall time: 1.99 ms
"""

这个类定义是可以去掉的,并不会影响最终的结果,%time 后面加上想要计算时间的代码,然后编译器就会在运行后自动给出所测试代码的运行时间,但是经过测试,%time方法测出的时间并不准确,时间波动范围非常大,这个是很好理解的,因为计算机每时每刻都在处理一些进程,也就是说计算机的运行状态每时每刻都是不同的,所以在不同的时刻测试同一段代码的运行时间也会得到不同的结果。

第三种

用IPython的另一个Built-in magic commands,%timeit,使用方法类似于%time,代码如下:

class Debug:
    def mainProgram(self):
        %timeit for i in range(100): print(i)
        

main = Debug()
main.mainProgram()
"""
8.53 ms ± 452 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
"""

我们可以看到得到的结果是:每个循环8.53 ms±452 µs(平均±标准偏差,共运行7次,每个循环100个)%timeit相比于%time,%timeit会多次执行测试代码,并且会取它们运行时间的平均值,并且还会计算出它们的标准差,因此这种计算方法计算的结果相对于使用%time执行测试代码一次是比较准确的。

第四种

导入timeit模块来计算代码块的执行时间

import timeit


class Debug:
    def mainProgram(self):
        result = timeit.timeit(stmt="for i in range(100): print(i)", number=10)
        print(result)


main = Debug()
main.mainProgram()
"""
0.05363089999991644 s
"""

导入timeit模块后使用timeit.timeit()来测试想要测试的代码,并且代码以string的形式进行输入,并且需要设定number值,设定测试的该段代码需要执行的次数,最终我们得到0.05363089999991644,单位是s(秒),与内置魔法方法%timeit方法不同的是虽然也是多次计算,但是最终获取的时间是n次执行代码所需的总时间而不是执行一次的时间。

至此,代码的运行速度测试方法的介绍暂时告一段落。

当然,还有一种进阶操作可以用来测试脚本文件的性能,python 脚本性能分析(超链接点击跳转)。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持Devmax。

python中的代码运行时间获取方式的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部