learning from 《流畅的python》

1. futures.ThreadPoolExecutor

import os
import time
import sys
import requests
POP20_CC = ('CN IN US ID BR PK NG BD RU JP ' 'MX PH VN ET EG DE IR TR CD FR').split()
BASE_URL = 'http://flupy.org/data/flags'
DEST_DIR = './'
def save_flag(img, filename):  # 保存图像
    path = os.path.join(DEST_DIR, filename)
    with open(path, 'wb') as fp:
        fp.write(img)
def get_flag(cc):  # 获取图像
    url = '{}/{cc}/{cc}.gif'.format(BASE_URL, cc=cc.lower())
    resp = requests.get(url)
    return resp.content
def show(text):  # 打印信息
    print(text, end=' ')
    sys.stdout.flush()
def download_many(cc_list):
    for cc in sorted(cc_list):
        image = get_flag(cc)  # 获取
        show(cc)  # 打印
        save_flag(image, cc.lower()   '.gif')  # 保存
    return len(cc_list)
def main(download_many):
    t0 = time.time()
    count = download_many(POP20_CC)
    elapsed = time.time() - t0
    msg = '\n{} flags downloaded in {:.2f}s'
    print(msg.format(count, elapsed))  # 计时信息
# ----使用 futures.ThreadPoolExecutor 类实现多线程下载
from concurrent import futures
MAX_WORKERS = 20  # 最多使用几个线程
def download_one(cc):
    image = get_flag(cc)
    show(cc)
    save_flag(image, cc.lower()   '.gif')
    return cc
def download_many_1(cc_list):
    workers = min(MAX_WORKERS, len(cc_list))
    with futures.ThreadPoolExecutor(workers) as executor:
        #  使用工作的线程数实例化 ThreadPoolExecutor 类;
        #  executor.__exit__ 方法会调用 executor.shutdown(wait=True) 方法,
        #  它会在所有线程都执行完毕 前阻塞线程
        res = executor.map(download_one, sorted(cc_list))
        # download_one 函数 会在多个线程中并发调用;
        # map 方法返回一个生成器,因此可以迭代, 获取各个函数返回的值
    return len(list(res))
if __name__ == '__main__':
    # main(download_many) # 24 秒
    main(download_many_1)  # 3 秒

2. 期物

通常不应自己创建期物

只能由并发框架(concurrent.futures 或 asyncio)实例化 原因:期物 表示终将发生的事情,其 执行的时间 已经排定。因此,只有排定把某件事交给 concurrent.futures.Executor 子类处理时,才会创建 concurrent.futures.Future 实例

例如,Executor.submit() 方法的参数是一个可调用的对象,调用这个方法后会为传入的可调用对象 排期,并返回一个期物

def download_many_2(cc_list):
    cc_list = cc_list[:5]
    with futures.ThreadPoolExecutor(max_workers=3) as executor:
        to_do = []
        for cc in sorted(cc_list):
            future = executor.submit(download_one, cc)
            # executor.submit 方法排定可调用对象的执行时间,
            # 然后返回一个 期物,表示这个待执行的操作
            to_do.append(future) # 存储各个期物
            msg = 'Scheduled for {}: {}'
            print(msg.format(cc, future))
        results = []
        for future in futures.as_completed(to_do):
            # as_completed 函数在期物运行结束后产出期物
            res = future.result() # 获取期物的结果
            msg = '{} result: {!r}'
            print(msg.format(future, res))
            results.append(res)
    return len(results)
输出:
Scheduled for BR: <Future at 0x22da99d2d30 state=running>
Scheduled for CN: <Future at 0x22da99e1040 state=running>
Scheduled for ID: <Future at 0x22da99e1b20 state=running>
Scheduled for IN: <Future at 0x22da99ec520 state=pending>
Scheduled for US: <Future at 0x22da99ecd00 state=pending>
CN <Future at 0x22da99e1040 state=finished returned str> result: 'CN'
BR <Future at 0x22da99d2d30 state=finished returned str> result: 'BR'
ID <Future at 0x22da99e1b20 state=finished returned str> result: 'ID'
IN <Future at 0x22da99ec520 state=finished returned str> result: 'IN'
US <Future at 0x22da99ecd00 state=finished returned str> result: 'US'
5 flags downloaded in 3.20s

3. 阻塞型I/O和GIL

CPython 解释器本身就不是线程安全的,因此有全局解释器锁(GIL), 一次只允许使用一个线程执行 Python 字节码。因此,一个 Python 进程 通常不能同时使用多个 CPU 核心

标准库中所有执行阻塞型 I/O 操作的函数,在等待操作系统返回结果时 都会释放 GIL。 这意味着在 Python 语言这个层次上可以使用多线程,而 I/O 密集型 Python 程序能从中受益:一个 Python 线程等待网络响应时,阻塞型 I/O 函数会释放 GIL,再运行一个线程(网络下载,文件读写都属于 IO 密集型)

4. 使用concurrent.futures模块启动进程

这个模块实现的是真正 的并行计算,因为它使用 ProcessPoolExecutor 类把工作分配给多个 Python 进程处理。 因此,如果需要做 CPU 密集型处理,使用这个模块 能绕开 GIL,利用所有可用的 CPU 核心

点击查看:进程、线程概念差异

使用 concurrent.futures 模块能特别轻松地 把 基于线程 的方案转成 基于进程 的方案

ProcessPoolExecutor 的价值体现在 CPU 密集型 作业上

以上就是python使用期物处理并发教程的详细内容,更多关于python期物处理并发的资料请关注Devmax其它相关文章!

python使用期物处理并发教程的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 为自定义创建的串行异步队列设置优先级

    如何使用GCD为自定义创建的串行异步队列设置高优先级?如果是这样,什么是替代解决方案?解决方法您的队列仍然是串行的.它只会在高优先级全局并发后台队列的一个插槽中一次执行一项任务.一旦创建,串行队列就不能以任何方式“并发”.同样,如果您创建并发队列并将其设置为以串行队列为目标,则它实际上变为串行.这一切都在manpage中有所涉及.

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部