一、数据可视化与探索图

数据可视化是指用图形或表格的方式来呈现数据。图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义。用户通过探索图(Exploratory Graph)可以了解数据的特性、寻找数据的趋势、降低数据的理解门槛。

二、常见的图表实例

本章主要采用 Pandas 的方式来画图,而不是使用 Matplotlib 模块。其实 Pandas 已经把 Matplotlib 的画图方法整合到 DataFrame 中,因此在实际应用中,用户不需要直接引用 Matplotlib 也可以完成画图的工作。

1.折线图

折线图(line chart)是最基本的图表,可以用来呈现不同栏位连续数据之间的关系。绘制折线图使用的是 plot.line() 的方法,可以设置颜色、形状等参数。在使用上,拆线图绘制方法完全继承了 Matplotlib 的用法,所以程序最后也必须调用 plt.show() 产生图,如图8.4 所示。

df_iris[['sepal length (cm)']].plot.line()
plt.show()
ax = df[['sepal length (cm)']].plot.line(color='green',title="Demo",style='--')
ax.set(xlabel="index", ylabel="length")
plt.show()

2.散布图

散布图(Scatter Chart)用于检视不同栏位离散数据之间的关系。绘制散布图使用的是 df.plot.scatter(),如图8.5所示。

df = df_iris
df.plot.scatter(x='sepal length (cm)', y='sepal width (cm)')
from matplotlib import cm
cmap = cm.get_cmap('Spectral')
df.plot.scatter(x='sepal length (cm)',
          y='sepal width (cm)',
          s=df[['petal length (cm)']]*20,
          c=df['target'],
          cmap=cmap,
          title='different circle size by petal length (cm)')

3.直方图、长条图

直方图(Histogram Chart)通常用于同一栏位,呈现连续数据的分布状况,与直方图类似的另一种图是长条图(Bar Chart),用于检视同一栏位,如图 8.6 所示。

df[['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)','petal width (cm)']].plot.hist()
2 df.target.value_counts().plot.bar()

4. 圆饼图、箱形图

圆饼图(Pie Chart)可以用于检视同一栏位各类别所占的比例,而箱形图(Box Chart)则用于检视同一栏位或比较不同栏位数据的分布差异,如图 8.7 所示。

df.target.value_counts().plot.pie(legend=True)
df.boxplot(column=['target'],figsize=(10,5))

数据探索实战分享:

本节利用两个真实的数据集实际展示数据探索的几种手法。

三、社区调查

在美国社区调查(American Community Survey)中,每年约有 350 万个家庭被问到关于他们是谁及他们如何生活的详细问题。调查的内容涵盖了许多主题,包括祖先、教育、工作、交通、互联网使用和居住。

数据名称:2013 American Community Survey。

先观察数据的样子与特性,以及每个栏位代表的意义、种类和范围。

# 读取数据
df = pd.read_csv("./ss13husa.csv")
# 栏位种类数量
df.shape
# (756065,231)
# 栏位数值范围
df.describe()

先将两个 ss13pusa.csv 串连起来,这份数据总共包含 30 万笔数据,3 个栏位:SCHL ( 学历,School Level)、 PINCP ( 收入,Income) 和 ESR ( 工作状态,Work Status)。

pusa = pd.read_csv("ss13pusa.csv") pusb = pd.read_csv("ss13pusb.csv")
# 串接两份数据
col = ['SCHL','PINCP','ESR']
df['ac_survey'] = pd.concat([pusa[col],pusb[col],axis=0)

依据学历对数据进行分群,观察不同学历的数量比例,接着计算他们的平均收入。

group = df['ac_survey'].groupby(by=['SCHL']) print('学历分布:'   group.size())
group = ac_survey.groupby(by=['SCHL']) print('平均收入:'  group.mean())

四、波士顿房屋数据集

波士顿房屋数据集(Boston House Price Dataset)包含有关波士顿地区的房屋信息, 包 506 个数据样本和 13 个特征维度。

数据名称:Boston House Price Dataset。

先观察数据的样子与特性,以及每个栏位代表的意义、种类和范围。

可以用直方图的方式画出房价(MEDV)的分布,如图 8.8 所示。

df = pd.read_csv("./housing.data")
# 栏位种类数量
df.shape
# (506, 14)
#栏位数值范围df.describe()
import matplotlib.pyplot as plt
df[['MEDV']].plot.hist()
plt.show()

注:图中英文对应笔者在代码中或数据中指定的名字,实践中读者可将它们替换成自己需要的文字。

接下来需要知道的是哪些维度与“房价”关系明显。先用散布图的方式来观察,如图8.9所示。

# draw scatter chart
df.plot.scatter(x='MEDV', y='RM') .
plt.show()

最后,计算相关系数并用聚类热图(Heatmap)来进行视觉呈现,如图 8.10 所示。

# compute pearson correlation
corr = df.corr()
# draw  heatmap
import seaborn as sns
corr = df.corr()
sns.heatmap(corr)
plt.show()

颜色为红色,表示正向关系;颜色为蓝色,表示负向关系;颜色为白色,表示没有关系。RM 与房价关联度偏向红色,为正向关系;LSTAT、PTRATIO 与房价关联度偏向深蓝, 为负向关系;CRIM、RAD、AGE 与房价关联度偏向白色,为没有关系。

到此这篇关于Python数据可视化探索实例分享的文章就介绍到这了,更多相关Python数据可视化内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python数据可视化探索实例分享的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 如何在Xcode 8中启用Visual Memory Debugger?

    我将项目从以前版本的Xcode迁移到Xcode8.我想要的是使用新的可视化内存调试器.它可用于新项目,但在我导入的项目中完全缺少.为什么是这样?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift - 继承UIView实现自定义可视化组件附记分牌样例

    在iOS开发中,如果创建一个自定义的组件通常可以通过继承UIView来实现。下面以一个记分牌组件为例,演示了组件的创建和使用,以及枚举、协议等相关知识的学习。效果图如下:组件代码:scoreView.swift123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051importUIKitenumscoreType{caseCommon//普通分数面板Best//最高分面板}pr

  6. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  9. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  10. 使用自动布局可视化格式与Swift?

    我一直在试图使用AutolayoutVisualFormatLanguageinSwift,使用NSLayoutConstraint.constraintsWithVisualFormat。这里有一些例子,没有什么有用的代码,但就我可以告诉应该让类型检查器快乐:但是,这会触发编译器错误:“Cannotconverttheexpression’stype‘[AnyObject]!’totype‘St

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部