一、Python的矩阵传播机制(Broadcasting)

我们知道在深度学习中经常要操作各种矩阵(matrix) 。回想一下,我们在操作数组(list)的时候,经常习惯于用**for循环(for-loop)**来对数组的每一个元素进行操作。例如:

my_list = [1,2,3,4]
new_list = []
for each in my_list:
    new_list.append(each*2)
print(new_list)  # 输出 [2,3,4,5]

如果是矩阵呢:

my_matrix = [[1,2,3,4],
             [5,6,7,8]]
new_matrix = [[],[]]
for i in range(2):    
    for j in range(4):
        new_matrix[i].append(my_matrix[i][j]*2)
print(new_matrix)# 输出 [[2, 4, 6, 8], [10, 12, 14, 16]]

实际上,上面的做法是十分的低效的!数据量小的话还不明显,如果数据量大了,尤其是深度学习中我们处理的矩阵往往巨大,那用for循环去跑一个矩阵,可能要你几个小时甚至几天。

Python考虑到了这一点,这也是本文主要想介绍的**“Python的broadcasting”传播机制**。

先说一句,python中定义矩阵、处理矩阵,我们一般都用numpy这个库。

二、下面展示什么是python的传播机制

import numpy as np# 先定义一个3×3矩阵 A:
A = np.array(
    [[1,2,3],
     [4,5,6],
     [7,8,9]]) 

print("A:\n",A)
print("\nA*2:\n",A*2) # 直接用A乘以2
print("\nA 10:\n",A 10) # 直接用A加上10

运行结果:

A:
 [[1 2 3]
 [4 5 6]
 [7 8 9]]

A*2:
 [[ 2  4  6]
 [ 8 10 12]
 [14 16 18]]

A 10:
 [[11 12 13]
 [14 15 16]
 [17 18 19]]

接着,再看看矩阵×( )矩阵:

#定义一个3×1矩阵(此时也可叫向量了)
B = np.array([[10],
              [100],
              [1000]]) 
print("\nB:\n",B)
print("\nA B:\n",A B) 
print("\nA*B:\n",A*B)

运行结果:

B:
 [[  10]
 [ 100]
 [1000]]

A B:
 [[  11   12   13]
 [ 104  105  106]
 [1007 1008 1009]]

A*B:
 [[  10   20   30]
 [ 400  500  600]
 [7000 8000 9000]]

可见,虽然A和B的形状不一样,一个是3×3,一个是3×1,但是我们在python中可以直接相加、相乘,相减相除也可以。也许看到这,大家都对broadcasting有感觉了。

用一个图来示意一下:

image.png

所谓“传播”,就是把一个数或者一个向量进行“复制”,从而作用到矩阵的每一个元素上

有了这种机制,那进行向量和矩阵的运算,就太方便了!理解了传播机制,就可以随心所欲地对矩阵进行各种便捷的操作了。

三、利用numpy的内置函数对矩阵进行操作

numpy内置了很多的数学函数,例如np.log(),np.abs(),np.maximum()等等上百种。直接把矩阵丢进去,就可以算出新矩阵! 示例:

print(np.log(A))

输出把A矩阵每一个元素求log后得到的新矩阵:

array([[0.        , 0.69314718, 1.09861229],
       [1.38629436, 1.60943791, 1.79175947],
       [1.94591015, 2.07944154, 2.19722458]])

再比如深度学习中常用的ReLU激活函数,就是y=max(0,x),

image.png

也可以对矩阵直接运算:

X = np.array([[1,-2,3,-4],              [-9,4,5,6]])Y = np.maximum(0,X)print(Y)

得到:

[[1 0 3 0] [0 4 5 6]]

更多的numpy数学函数,可以参见文档

四、定义自己的函数来处理矩阵

其实这才是我写下本文的目的。。。前面扯了这么多,只是做个铺垫( /ω\)

我昨天遇到个问题,就是我要对ReLU函数求导,易知,y=max(0,x)的导函数是:y’ = 0 if x<0 y’ = 1 if x>0 但是这个y’(x)numpy里面没有定义,需要自己构建。即,我需要将矩阵X中的小于0的元素变为0,大于0的元素变为1。搞了好久没弄出来,后来在StackOverflow上看到了解决办法:

def relu_derivative(x):
    x[x<0] = 0
    x[x>0] = 1
    return x

X = np.array([[1,-2,3,-4],
              [-9,4,5,6]])

print(relu_derivative(X))

输出:

[[1 0 1 0]
 [0 1 1 1]]

**居然这么简洁就出来了!!!**ミ゚Д゚彡 (゚Д゚#)

这个函数relu_derivative中最难以理解的地方,就是**x[x>0]**了。于是我试了一下:

X = np.array([[1,-2,3,-4],
              [-9,4,5,6]])
print(X[X>0])
print(X[X<0])

输出:

[1 3 4 5 6]
[-2 -4 -9]

它直接把矩阵X中满足条件的元素取了出来!原来python对矩阵还有这种操作!

所以可以这么理解,X[X>0]相当于一个“选择器”,把满足条件的元素选出来,然后直接全部赋值。

用这种方法,我们便可以定义各种各样我们需要的函数,然后对矩阵整体进行更新操作了!

五、总结

可以看出,python以及numpy对矩阵的操作简直神乎其神,方便快捷又实惠。其实上面忘了写一点,那就是计算机进行矩阵运算的效率要远远高于用for-loop来运算

不信可以用跑一跑:

# vetorization vs for loop
# define two arrays a, b:
a = np.random.rand(1000000)
b = np.random.rand(1000000)

# for loop version:
t1 = time.time()
c = 0
for i in range(1000000):
    c  = a[i]*b[i]
t2 = time.time()
print(c)
print("for loop version:" str(1000*(t2-t1)) "ms")
time1 = 1000*(t2-t1)

# vectorization version:
t1 = time.time()
c = np.dot(a,b)
t2 = time.time()
print(c)
print("vectorization version:" str(1000*(t2-t1)) "ms")
time2 = 1000*(t2-t1)

print("vectorization is faster than for loop by " str(time1/time2) " times!")

运行结果:

249765.8415288075
for loop version:627.4442672729492ms
249765.84152880745
vectorization version:1.5032291412353516ms
vectorization is faster than for loop by 417.39762093576525 times!

可见,用for方法和向量化方法,计算结果是一样,但是后者比前者快了400多倍!

因此,在计算量很大的时候,我们要尽可能想办法对数据进行Vectorizing,即“向量化” ,以便让计算机进行矩阵运算。

到此这篇关于Python 的矩阵传播机制Broadcasting和矩阵运算的文章就介绍到这了,更多相关Python矩阵传播内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python 的矩阵传播机制Broadcasting和矩阵运算的更多相关文章

  1. HTML利用九宫格原理进行网页布局

    这篇文章主要介绍了HTML利用九宫格原理进行网页布局,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  2. ios – 围绕x轴旋转AVAssetWriter的输出180度

    我正在使用AVAssetWriter创建一个Quicktime电影文件.目前输出视频是“倒置”.理论上,我可以通过围绕水平轴旋转180度来纠正这个问题.最好的方法是什么?Appledocs和wikipedia都没有明确说明仿射变换矩阵是如何工作的.并且可能有更好的方式.解决方法如果要围绕z轴旋转视频180度,或者如果你想在x轴上反射

  3. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  4. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  5. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  6. Swift 2.0学习笔记Day 35——会使用下标吗?

    下标Swift中的下标相当于Java中的索引属性和C#中的索引器。getter访问器是一个方法,在最后使用return语句将计算结果返回。setter访问器“新属性值”是要赋值给属性值。参数的声明可以省略,系统会分配一个默认的参数newValue。可以自定义一个二维数组类型,然后通过两个下标参数访问它的元素,形式上类似于C语言的二维数组。

  7. Swift - 动画效果的实现方法总结附样例

    在iOS中,实现动画有两种方法。这三个方法都是类方法。里面可以设置动画的效果。

  8. 《从零开始学Swift》学习笔记Day 35――会使用下标吗?

    下标Swift中的下标相当于Java中的索引属性和C#中的索引器。getter访问器是一个方法,在最后使用return语句将计算结果返回。setter访问器“新属性值”是要赋值给属性值。参数的声明可以省略,系统会分配一个默认的参数newValue。可以自定义一个二维数组类型,然后通过两个下标参数访问它的元素,形式上类似于C语言的二维数组。

  9. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部