如果内容侵权的话,联系我,我会立马删了的~因为参考的太多了,如果一一联系再等回复,战线太长了~~蟹蟹给我贡献技术源泉的作者们~

最近准备从理论和实验两个方面学习深度学习,所以,前面装好了Theano环境,后来知乎上看到这个回答,就调研了一下各个深度学习框架,我没有看源码,调研也不是很深入,仅仅是为了选择深度学习框架做的一个大概了解~

1. 如何选择深度学习框架?

参考资料如下:

1.https://github.com/zer0n/deepframeworks/blob/master/README.md

2.http://www.jb51.cc/article/p-hufaviyg-gz.html

3.https://www.zhihu.com/question/41907061

4.http://www.open-open.com/news/view/1069a70

5.http://www.kuqin.com/shuoit/20151124/349098.html

博客2总结如下:

库名称 开发语言 速度 灵活性 文档 适合模型 平台 上手
Caffe c++/cuda 一般 全面 CNN 所有系统 中等
TensorFlow c++/cuda/python 中等 中等 CNN/RNN Linux\OSX
MXNet c++/cuda 全面 CNN 所有系统 中等
Torch c/lua/cuda 全面 CNN/RNN Linux\OSX 中等
Theano python/c++/cuda 中等 中等 CNN/RNN Linux\OSX

(1)Caffe

第一个主流的工业级深度学习工具。它开始于2013年底,由UC Berkely的 YangqingJia老师编写和维护的具有出色的卷积神经网络实现。在计算机视觉领域Caffe依然是最流行的工具包。它有很多扩展,但是由于一些遗留的架构问题,不够灵活且对递归网络和语言建模的支持很差。

(2)TensorFlow

Google开源的其第二代深度学习技术——被使用在Google搜索、图像识别以及邮箱的深度学习框架。是一个理想的RNN(递归神经网络)API和实现,TensorFlow使用了向量运算的符号图方法,使得新网络的指定变得相当容易,支持快速开发。缺点是速度慢,内存占用较大。(比如相对于Torch)

(3)MXNet

是李沐和陈天奇等各路英雄豪杰打造的开源深度学习框架,是分布式机器学习通用工具包 DMLC的重要组成部分。它注重灵活性和效率,文档也非常的详细,同时强调提高内存使用的效率,甚至能在智能手机上运行诸如图像识别等任务。
(4)Torch
Facebook力推的深度学习框架,主要开发语言是C和Lua。有较好的灵活性和速度。它实现并且优化了基本的计算单元,使用者可以很简单地在此基础上实现自己的算法,不用浪费精力在计算优化上面。核心的计算单元使用C或者cuda做了很好的优化。在此基础之上,使用lua构建了常见的模型。缺点是接口为lua语言,需要一点时间来学习。
(5)Theano
2008年诞生于蒙特利尔理工学院,主要开发语言是Python。Theano派生出了大量深度学习Python软件包,最著名的包括 Blocks和 Keras。Theano的最大特点是非常的灵活,适合做学术研究的实验,且对递归网络和语言建模有较好的支持,缺点是速度较慢。
知乎用户 杜客回答如下:
斯坦福的CS231n - Convolutional Neural Networks for Visual Recognition(Winter 2016)中的Lecture 12中,由课程讲师@ Justin Johnson详细介绍了他个人对于主流第三方库的实践经历和看法,时间新,干货多:

然后他强调了几个 用例问题
1.Extract AlexNet or VGG features? Use Caffe
2.Fine tune AlexNet for new classes? Use Caffe
3.Image caption with finetuning?

-> Need pretrained models (Caffe,Torch,Lasagne)

-> Need RNNs (Torch or Lasagne)
-> Use Torch or Lasagna

4.Segmentation?(Classify every pixel)

-> Need pretrained model (Caffe,Lasagna)-> Need funny loss function
-> If loss function exists in Caffe: Use Caffe
-> If you want to write your own loss: Use Torch

5.Object Detection?

-> Need pretrained model (Torch,Caffe,Lasagne)
-> Need lots of custom imperative code (NOT Lasagne)-> Use Caffe + Python or Torch

6.Language modeling with new RNN structure?

-> Need easy recurrent nets (NOT Caffe,Torch)

-> No need for pretrained models
-> Use Theano or TensorFlow

7.Implemente Batchnorm?

-> Don’t want to derive gradient? Theano or TensorFlow

-> Implement efficient backward pass? Use Torch

最后,JJ比较个人化地给出了自己的偏好:

第一部分对于这5个框架的介绍讲述了一些概念以及基本优缺点,首先我的使用情况就是文本训练学习,可能需要用到RNN模型,而且我比较熟悉python一些,C++以及lua都不太会,所以基本确定要了解Theano 和 Tensorflow这两个框架,杜客在知乎回答的内容中,选择tensorflow还是Theano,可以看出大牛介绍的主要还是图像领域的一些应用,然后第6点,Language modeling with new RNN structure也可以基本确定我们需要这两个框架。

然后选择谁?虽然Caffe的作者贾扬清老师说“都是基于Python的符号运算库,TensorFlow显然支持更好,Google也比高校有更多的人力投入。Theano的主要开发者现在都在Google,可以想见将来的工程资源上也会更偏向于TF一些”。知乎用户张昊说“1. 看你做什么application 2. 看哪个framework能够提供给你最多与你所做的问题相关的资源。举个例子,比如做language相关,在小数据上跑跑实验的话我觉得theano不错,网上能找到的相关资源(比如其他相关paper的实现,model)很多。如果做视觉相关的那theano的资源跟caffe和torch比就少多了,所以caffe和torch可能会是更好的选择。TF也不错,最近Google promote的很厉害,估计随着用的人越来越多在一两年内资源也会越来越多。”鉴于我目前只是学习一下,所以决定使用Theano,但是今天还是花了蟹时间安装Tensorflow。

2.安装Tensorflow

Ubuntu14.04+cuda7.5+cudnnv4+Tensorflow

基本根据官方给的教程就可以安装了https://www.tensorflow.org,然后学校有时候打不开界面,所以也可以参考这里。

我选择的pip install方式。

$ sudo apt-get install python-pip python-dev

其实这些工具前面好像安装过了,但是怕有问题就再执行一遍,选择符合自己情况的命令执行下去。

# Ubuntu/Linux 64-bit,GPU enabled,Python 2.7
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions,see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl

出现错误,在教程里的common problems中说:

...
SSLError: [SSL: CERTIFICATE_VERIFY_Failed] certificate verify Failed

Solution: Download the wheel manually via curl or wget,and pip install locally.所以使用wget命令下载再执行安装。

wget https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl
sudo pip install tensorflow-0.9.0-cp27-none-linux_x86_64.whl

接着测试tensorflow.

Open a terminal and type the following:

$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello,TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello,TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>>

没有问题。

$ python -c 'import os; import inspect; import tensorflow; print(os.path.dirname(inspect.getfile(tensorflow)))'

结果如下:

测试运行:

$ python -m tensorflow.models.image.mnist.convolutional

出现错误:

lvxia@kde:~$ python -m tensorflow.models.image.mnist.convolutional
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Extracting data/train-images-idx3-ubyte.gz
Traceback (most recent call last):
  File "/usr/lib/python2.7/runpy.py",line 162,in _run_module_as_main
    "__main__",fname,loader,pkg_name)
  File "/usr/lib/python2.7/runpy.py",line 72,in _run_code
    exec code in run_globals
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py",line 316,in <module>
    tf.app.run()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py",line 30,in run
    sys.exit(main(sys.argv))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py",line 128,in main
    train_data = extract_data(train_data_filename,60000)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py",line 75,in extract_data
    buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images)
  File "/usr/lib/python2.7/gzip.py",line 261,in read
    self._read(readsize)
  File "/usr/lib/python2.7/gzip.py",line 308,in _read
    self._read_eof()
  File "/usr/lib/python2.7/gzip.py",line 347,in _read_eof
    hex(self.crc)))
IOError: CRC check Failed 0xe1d362ba != 0x90dd462eL

https://github.com/tensorflow/tensorflow/issues/1319中的解决方式:

因此,进入convolutional.py所在目录,修改文件权限,然后将WORK_DIRECTORY的data修改为/usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/data 即可。

sudo chmod 777 convolutional.py

重新执行:

python -m tensorflow.models.image.mnist.convolutional

还是出现错误

E tensorflow/stream_executor/cuda/cuda_dnn.cc:286] Loaded cudnn library: 5005 but source was compiled against 4007. If using a binary install,upgrade your cudnn library to match. If building from sources,make sure the library loaded matches the version you specified during compile configuration.

可以看到是cudnn版本不一致的问题导致的。

然后官网上有这么一句“Download cuDNN v4 (v5 is currently a release candidate and is only supported when installing TensorFlow from sources).”,所以我就下载了cuDNN v4。

tar xvzf cudnn-7.0-linux-x64-v4.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-7.5/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-7.5/lib64
sudo chmod a+r /usr/local/cuda-7.5/include/cudnn.h /usr/local/cuda-7.5/lib64/libcudnn*

我忘记以前怎么操作的了,我的/esr/local文件夹下有两个cuda文件,一个是cuda一个是cuda-7.5.这里我把他放在cuda7.5文件夹下面。

然后执行上述命令就没有问题了。

中间晕晕呼呼还尝试了一遍源代码安装方式,就是官网上的install from sources,基本步骤也按照上面来,结合 博客博客 就可以了,碰到蟹问题,基本google能找出解决办法的。

这篇博客讲述了tensorflow源码目录结构的一些知识。

这里记录几个小问题和解决方法:

(1)OSError - Errno 13 Permission denied

chown -R user-id:group-id /path/to/the/directory

(2)AttributeError: type object 'NewBase' has no attribute 'is_abstract'

sudo pip install six --upgrade --target="/Library/Python/2.7/site-packages/"

(3)./configure 在 tensorflow目录下,这个在源代码安装方式中用到这个配置了。

ubuntu14.04 安装 tensorflow(附一系列报错方案)的更多相关文章

  1. ios中的.dylib和.a lib有什么区别?

    我知道Objectivec中的编译和运行时是什么,但是我想知道是什么画了这两个库之间的界限?他们的目的是什么,除了陈述一个是静态的而另一个是动态的?我们何时需要一个而不是另一个?

  2. ios – 如何使用Objective C类中的多个参数调用Swift函数?

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  3. ios – Swift 4添加手势:覆盖vs @objc

    我想在我的视图中添加一个手势,如下所示:但是,在Swift4中,我的编译器给出了以下错误:建议添加@objc以将此实例方法公开给Objective-C.实现此目的的另一个选项将覆盖touchesBegan()函数并使用它来处理点击.我试图以“Swift”的方式做到这一点,而不必带入Obj-C.有没有纯粹的Swift方式来添加这个轻击手势而不使用@objc?

  4. ios – 将视频分享到Facebook

    我正在编写一个简单的测试应用程序,用于将视频从iOS上传到Facebook.由于FacebookSDK的所有文档都在Objective-C中,因此我发现很难在线找到有关如何使用Swift执行此操作的示例/教程.到目前为止我有这个在我的UI上放置一个共享按钮,但它看起来已禁用,从我读到的这是因为没有内容设置,但我看不出这是怎么可能的.我的getVideoURL()函数返回一个NSURL,它肯定包含视

  5. ios – 以编程方式在Swift中添加联系人

    我想在Swift中以编程方式添加联系人.我发现了一些Objective-C示例,但我没有让它们工作,甚至在Objective-C中也没有.我不希望这涉及到AddressBookUI,因为我想从我自己的UI中获取值.解决方法这是在Swift中添加联系人的快速方法.我在我的iPhone5iOS7.1上验证了它,因为我发现模拟器并不总是与我的手机对AB的东西相同.您可以添加一个按钮并指向此方法:顺便说一下–它假设你已经分配了一个地址簿var,你可以通过覆盖viewDidAppear来打开视图.它也会执行安全提示

  6. ios – 为目标c中的方法传递未知类型的参数,可能吗?

    是否可以将未知类型的参数传递给objective-C方法?在C#中你可以写实现这一点,但我知道Objective-C没有泛型,所以有没有其他方法可以在Objective-C中实现这一点?我需要这个,因为我想创建一个方法来改变不同对象的文本颜色,如UITextField和UIButton的占位符文本.所以我的计划是创建一个名为textWhite的方法,然后在此方法中检查对象的类型,然后运行匹配的代码以使文本颜色变为白色.解决方法是的,可以传递未知类型的参数.见下面的例子.请参考使用id对象的链接作为参数Us

  7. ios – Swift指针算术和解除引用;将一些类似C的地图代码转换为Swift

    我有一点似乎没有工作的Swift代码……解决方法您正在指定locationPointer指向新位置,但仍在下一行中使用ptr,并且ptr的值尚未更改.将您的最后一行更改为:或者你可以改变指向var的指针并推进它:

  8. xamarin.ios – ShareKit与MonoTouch如何?

    有人可以验证ShareKit实际上是否可用于MonoTouch并指导我完成使其工作所需的步骤?解决方法您首先从getsharekit.com下载还是使用ShareKit2.0?

  9. ios – “禁用模块时使用’@import’”错误 – 启用模块和链接框架= YES

    我有一个使用CocoaPods并使用’SCLAlertView-Objective-C’窗格的项目.该pod使用@importUIKit;模块样式导入.我在目标和项目设置中将“启用模块(C&Objective-C)”和“自动链接框架”设置为YES.当模块被禁用时,我仍然得到“使用’@import’错误.有没有什么可以阻止Xcode能够启用模块,如使用.pch文件,任何链接器标志,或者我没有提到的任

  10. XCode 6.3立即在抛出的Objective-C异常上引发SIGABRT

    考虑以下目标-C代码在XCode6.2中,它按预期工作(记录“错误消息”).但是,由于我们升级到6.3,抛出行(throwstd::logic_error…)引发SIGABRT(堆栈跟踪仅包含_cxa_throw和_pthread_kill,超出applicationdidFinishLaunchingWithOptions)并导致应用程序崩溃.这只发生在我们的应用程序中–当我将完全相同的代码复制

随机推荐

  1. crontab发送一个月份的电子邮件

    ubuntu14.04邮件服务器:Postfixroot收到来自crontab的十几封电子邮件.这些邮件包含PHP警告.>我已经解决了这些警告的原因.>我已修复每个cronjobs不发送电子邮件(输出发送到>/dev/null2>&1)>我删除了之前的所有电子邮件/var/mail/root/var/spool/mail/root但我仍然每小时收到十几封电子邮件.这些电子邮件来自cronjobs,

  2. 模拟两个ubuntu服务器计算机之间的慢速连接

    我想模拟以下场景:假设我有4台ubuntu服务器机器A,B,C和D.我想在机器A和机器C之间减少20%的网络带宽,在A和B之间减少10%.使用网络模拟/限制工具来做到这一点?

  3. ubuntu-12.04 – 如何在ubuntu 12.04中卸载从源安装的redis?

    我从源代码在Ubuntu12.04上安装了redis-server.但在某些时候它无法完全安装,最后一次makeinstallcmd失败.然后我刚刚通过apt包安装.现在我很困惑哪个安装正在运行哪个conf文件?实际上我想卸载/删除通过源安装的所有内容,只是想安装一个包.转到源代码树并尝试以下命令:如果这不起作用,您可以列出软件自行安装所需的步骤:

  4. ubuntu – “apt-get source”无法找到包但“apt-get install”和“apt-get cache”可以找到它

    我正在尝试下载软件包的源代码,但是当我运行时它无法找到.但是当我运行apt-cache搜索squid3时,它会找到它.它也适用于apt-getinstallsquid3.我使用的是Ubuntu11.04服务器,这是我的/etc/apt/sources.list我已经多次更新了.我尝试了很多不同的debs,并没有发现任何其他地方的错误.这里的问题是你的二进制包(deb)与你的源包(deb-src)不

  5. ubuntu – 有没有办法检测nginx何时完成正常关闭?

    &&touchrestarted),因为即使Nginx没有完成其关闭,touch命令也会立即执行.有没有好办法呢?这样的事情怎么样?因此,pgrep将查找任何Nginx进程,而while循环将让它坐在那里直到它们全部消失.你可以改变一些有用的东西,比如睡1;/etc/init.d/Nginx停止,以便它会休眠一秒钟,然后尝试使用init.d脚本停止Nginx.你也可以在某处放置一个计数器,这样你就可以在需要太长时间时发出轰击信号.

  6. ubuntu – 如何将所有外发电子邮件从postfix重定向到单个地址进行测试

    我正在为基于Web的应用程序设置测试服务器,该应用程序发送一些电子邮件通知.有时候测试是使用真实的客户数据进行的,因此我需要保证服务器在我们测试时无法向真实客户发送电子邮件.我想要的是配置postfix,以便它接收任何外发电子邮件并将其重定向到一个电子邮件地址,而不是传递到真正的目的地.我正在运行ubuntu服务器9.10.先感谢您设置本地用户以接收所有被困邮件:你需要在main.cf中添加:然后

  7. ubuntu – vagrant无法连接到虚拟框

    当我使用基本的Vagrantfile,只配置了两条线:我看到我的虚拟框打开,但是我的流氓日志多次显示此行直到超时:然后,超时后的一段时间,虚拟框框终于要求我登录,但是太久了!所以我用流氓/流氓记录.然后在我的物理机器上,如果我“流氓ssh”.没有事情发生,直到:怎么了?

  8. ubuntu – Nginx – 转发HTTP AUTH – 用户?

    我和Nginx和Jenkins有些麻烦.我尝试使用Nginx作为Jenkins实例的反向代理,使用HTTP基本身份验证.它到目前为止工作,但我不知道如何传递带有AUTH用户名的标头?}尝试将此指令添加到您的位置块

  9. Debian / Ubuntu – 删除后如何恢复/ var / cache / apt结构?

    我在ubuntu服务器上的空间不足,所以我做了这个命令以节省空间但是现在在尝试使用apt时,我会收到以下错误:等等显然我删除了一些目录结构.有没有办法做apt-getrebuild-var-tree或类似的?

  10. 检查ubuntu上安装的rubygems版本?

    如何查看我的ubuntu盒子上安装的rubygems版本?只是一个想法,列出已安装的软件包和grep为ruby或宝石或其他:)dpkg–get-selections

返回
顶部