1 测试环境&软件准备

硬件:

  • Dell T430
  • Nvidia GTX 1080

软件:

  • Ubuntu 16.04 x86_64
  • cuda8.0
  • cuDNN(5.1)
前提:系统,显卡驱动等都已经安装好。

2 安装cuda

点击上述链接,下载cuda(注意与显卡兼容的版本)。最好下载.run文件,因为在安装cuda的时候,会自动给系统安装显卡驱动,而我们先前在装显卡的时候,已经安装好了最新的驱动,因此不需要再装一次显卡驱动。

(1)~$ sudo sh cuda_8.0.27_linux.run

接下来,会出现提示“Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.77?”,问你是否安装显卡驱动,当然要选择n了。其他默认选择即可。


(2)配置环境变量:(编辑.bashrc文件)

在末尾添加:

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

添加完毕后记得source一下,使其生效。


3 安装cuDNN

为了达到更高的性能,可以借助专业加速库cnDNN。下载完成后(注意:cuDNN库与cuda版本兼容性),解压tgz文件,将相关文件复制到/usr/local/cuda,输入命令:

~$ tar xvzf cudnn-8.0-linux-x64-v5.1.tgz

~$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
   ~$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
   ~$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

(4)测试cuda样例nbody

首先,看看显卡信息,输入命令:

 ~$ nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.27                 Driver Version: 367.27                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1080    Off  | 0000:03:00.0      On |                  Off |
| 27%   33C    P8    N/A /  N/A |    376MiB / 81133MiB |      6%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 1080    Off  | 0000:04:00.0     Off |                  N/A |
| 27%   38C    P8     6W / 180W |      1MiB /  8113MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

然后,建立并测试样例:

$ cd NVIDIA_CUDA-8.0/5_Simulations/nbody

$ make

$ ./nbody -benchmark -numbodies=256000 -device=0

> Windowed mode > Simulation data stored in video memory

> Single precision floating point simulation

> 1 Devices used for simulation gpuDeviceInit() CUDA Device [0]: "GeForce GTX 1080"
> Compute 6.1 CUDA device: [GeForce GTX 1080]
number of bodies = 256000
256000 bodies,total time for 10 iterations: 2385.759 ms
= 274.697 billion interactions per second
= 5495.992 single-precision GFLOP/s at 20 flops per interaction

如果能够正常显示上面信息,则表示安装成功!Caffe cuDNN模式相比cpu模式加速15.46倍,相比GPU模式加速7.7倍。

4 安装caffe

这里就直接转到前面介绍的cpu版的安装法,基本依赖包都给安装了。在编译安装caffe时,只需要修改Makefile.config中的选项USE_CUDNN := 1。注意:因为本篇是GPU版,因此不能将Makefile.config文件中“# cpu_ONLY := 1”,前面的#号去掉,其他步骤都一样。其实安装caffe还算比较轻松的,步骤也就这么一点,依赖包都是命令搞定,祝好运!!!

Ubuntu14.04+GTX1080+Caffe+python配置总结GPU版的更多相关文章

  1. android – 符合Nvidia Tegra profiler 2.0的移动设备

    解决方法通常任何基于Tegra4和K1的设备都可以工作,但我会推荐Nvidia的Shield/Note用于你的工作,不仅是他们退出便宜,而且他们的机器人留下了很多香草使它更容易使用.还有(可用的)更新策略的优点.

  2. PyTorch中的CUDA的操作方法

    这篇文章主要介绍了PyTorch中的CUDA的操作方法,CUDA是NVIDIA推出的异构计算平台,PyTorch中有专门的模块torch.cuda来设置和运行CUDA相关操作,更多相关介绍,需要的朋友可以查看下面文章内容

  3. 是否可以在另一个GPU(2 GPU系统)中处理数据

    我的算法需要对每个相机的数据进行长期处理,因此每个相机都需要访问相同的GPU内存问题在一个GPU中处理4个摄像头可能会导致内存不足。所以,我认为一个GPU只能处理两个摄像头。但在第一时间,如果cam3在GPU0处被处理,则cam3数据不能在GPU1处处理。我想将cam3数据从GPU0复制到GPU1,但它并没有那么小,所以看起来效率很低。是否可以在GPU1上使用GPU0数据进行处理而无需内存?我在CUDA方面很短,所以如果有好的关键词来解决这个问题,请告诉我。

  4. 如何编写CUDA内核来加速python代码

    几周来,我一直在学习python作为我的第一种编程语言。我决定用Numba编写一个乐透模拟。该代码在我的CPU上每秒大约250k次迭代时运行得很好。我真的很想看看它是如何在我的英伟达GPU上运行的,但我有点力不从心。如果有人能帮我一把,我将非常感激。我想我应该能够运行float16,因为数字并不复杂。此外,@vectorize似乎很重要。但是,老实说,我在踩水。

  5. 为什么cuGraphAddMemCopyNode已经获得了两个上下文,却需要额外的上下文?

    考虑CUDA图形API函数在此描述。它采用的CUDA_MEMCPY3D结构是一组非常广泛的参数。实际上,它包含两个上下文句柄字段:srcContext和dstContext,用于定义源和目标内存区域或数组的上下文。然而,该函数需要额外的第三个上下文句柄。但是,这意味着什么?节点是一个图,它通过具有上下文的流启动。除此之外,为什么这很重要?两个端点上下文应该足以让CUDA驱动程序执行复制。虽然大多数节点插入API函数都没有?

  6. windows – 未检测到支持CUDA的设备

    我是CUDA编程的新手,我完全陷入困境.当我尝试运行提供的deviceQuery实用程序或其中一个示例应用程序时,我收到以下错误:我使用的是Windows7,64位.我安装了VisualStudio2012,然后安装了CUDA5.064位.我的显卡是NVIDIAGeForceGTS250.今天我去了NVIDIA网站并重新安装了该卡的最新驱动程序.除了“确保安装了正在运行的驱动程序”之外,我在Win

  7. windows – 安装Tensorflow的问题 – 不是CUDA / CuDNN问题

    我最近开始进入Tensorflow,但我遇到了安装问题.每次我尝试导入它时,我都会收到以下错误我查看了与我有同样问题的其他堆栈溢出帖子,他们建议从NVIDIA获取CUDA库.问题是,我既没有NVIDIA显卡也没有GPU版本的张量流,所以我不认为这是问题所在.还有一些建议可以确保安装VisualStudio的Microsoft可再发行组件.如果这是一个基于系统变量的问题,我很感激帮助改变系统变量,因为我是新手.谢谢!

  8. 如何在Windows上模拟CUDA

    有没有什么方法可以从没有NVIDIA显卡的电脑上测试CUDA样品和代码?

  9. Windows – 编译没有Visual Studio的CUDA – “在路径中找不到编译器cl.exe”

    我刚刚在CUDA开始了一个小项目.我需要知道如下:是否可以编译CUDA代码而不使用/购买MicrosoftVisualStudio?使用Nvcc.exe我得到错误“找不到编译器cl.exe在路径”.我试图为NetBeans安装一个CUDAplugin,但它不起作用.(使用当前版本的NetBeans)平台:Windows7提前致谢.更新如评论中所述,Windows7之后的SDK版本不包括构建工具.如

  10. 在Ubuntu 12.10中安装cuda 5样本

    我正在安装cuda5样本:但是我收到这个错误:但:nvidia安装程序正在寻找什么?Ubuntu12.10中没有/usr/lib64:我也在运行Ubuntu12.10,我发现这个库在文件夹/usr/lib/x86_64-linux-gnu/之后安装freeglut3包.我也做了一个softlink,我已经能够安装CUDA5.0的例子:我还没有检查样品是否可以编辑.

随机推荐

  1. crontab发送一个月份的电子邮件

    ubuntu14.04邮件服务器:Postfixroot收到来自crontab的十几封电子邮件.这些邮件包含PHP警告.>我已经解决了这些警告的原因.>我已修复每个cronjobs不发送电子邮件(输出发送到>/dev/null2>&1)>我删除了之前的所有电子邮件/var/mail/root/var/spool/mail/root但我仍然每小时收到十几封电子邮件.这些电子邮件来自cronjobs,

  2. 模拟两个ubuntu服务器计算机之间的慢速连接

    我想模拟以下场景:假设我有4台ubuntu服务器机器A,B,C和D.我想在机器A和机器C之间减少20%的网络带宽,在A和B之间减少10%.使用网络模拟/限制工具来做到这一点?

  3. ubuntu-12.04 – 如何在ubuntu 12.04中卸载从源安装的redis?

    我从源代码在Ubuntu12.04上安装了redis-server.但在某些时候它无法完全安装,最后一次makeinstallcmd失败.然后我刚刚通过apt包安装.现在我很困惑哪个安装正在运行哪个conf文件?实际上我想卸载/删除通过源安装的所有内容,只是想安装一个包.转到源代码树并尝试以下命令:如果这不起作用,您可以列出软件自行安装所需的步骤:

  4. ubuntu – “apt-get source”无法找到包但“apt-get install”和“apt-get cache”可以找到它

    我正在尝试下载软件包的源代码,但是当我运行时它无法找到.但是当我运行apt-cache搜索squid3时,它会找到它.它也适用于apt-getinstallsquid3.我使用的是Ubuntu11.04服务器,这是我的/etc/apt/sources.list我已经多次更新了.我尝试了很多不同的debs,并没有发现任何其他地方的错误.这里的问题是你的二进制包(deb)与你的源包(deb-src)不

  5. ubuntu – 有没有办法检测nginx何时完成正常关闭?

    &&touchrestarted),因为即使Nginx没有完成其关闭,touch命令也会立即执行.有没有好办法呢?这样的事情怎么样?因此,pgrep将查找任何Nginx进程,而while循环将让它坐在那里直到它们全部消失.你可以改变一些有用的东西,比如睡1;/etc/init.d/Nginx停止,以便它会休眠一秒钟,然后尝试使用init.d脚本停止Nginx.你也可以在某处放置一个计数器,这样你就可以在需要太长时间时发出轰击信号.

  6. ubuntu – 如何将所有外发电子邮件从postfix重定向到单个地址进行测试

    我正在为基于Web的应用程序设置测试服务器,该应用程序发送一些电子邮件通知.有时候测试是使用真实的客户数据进行的,因此我需要保证服务器在我们测试时无法向真实客户发送电子邮件.我想要的是配置postfix,以便它接收任何外发电子邮件并将其重定向到一个电子邮件地址,而不是传递到真正的目的地.我正在运行ubuntu服务器9.10.先感谢您设置本地用户以接收所有被困邮件:你需要在main.cf中添加:然后

  7. ubuntu – vagrant无法连接到虚拟框

    当我使用基本的Vagrantfile,只配置了两条线:我看到我的虚拟框打开,但是我的流氓日志多次显示此行直到超时:然后,超时后的一段时间,虚拟框框终于要求我登录,但是太久了!所以我用流氓/流氓记录.然后在我的物理机器上,如果我“流氓ssh”.没有事情发生,直到:怎么了?

  8. ubuntu – Nginx – 转发HTTP AUTH – 用户?

    我和Nginx和Jenkins有些麻烦.我尝试使用Nginx作为Jenkins实例的反向代理,使用HTTP基本身份验证.它到目前为止工作,但我不知道如何传递带有AUTH用户名的标头?}尝试将此指令添加到您的位置块

  9. Debian / Ubuntu – 删除后如何恢复/ var / cache / apt结构?

    我在ubuntu服务器上的空间不足,所以我做了这个命令以节省空间但是现在在尝试使用apt时,我会收到以下错误:等等显然我删除了一些目录结构.有没有办法做apt-getrebuild-var-tree或类似的?

  10. 检查ubuntu上安装的rubygems版本?

    如何查看我的ubuntu盒子上安装的rubygems版本?只是一个想法,列出已安装的软件包和grep为ruby或宝石或其他:)dpkg–get-selections

返回
顶部