本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权

欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing

本文主要是介绍在ubuntu16.04下,怎么配置当下流行的深度学习框架,cuda8.0+cudnn+caffe+theano+tensorflow

安装英伟达显卡驱动

首先去官网上查看适合你GPU的驱动

(http://www.nvidia.com/Download/index.aspx?lang=en-us)

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-375(375是你查到的版本号)
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev

执行完上述后,重启(reboot)。

重启后输入

nvidia-smi

如果出现了你的GPU列表,则说明驱动安装成功了。另外也可以通过,或者输入

nvidia-settings

出现

  1. 配置cuda

https://developer.nvidia.com/cuda-downloads

在cuda所在目录打开terminal依次输入以下指令:

sudo dpkg -i cuda-repo-ubuntu1604-8-0-rc_8.0.27-1_amd64​.deb
sudo apt-get update
sudo apt-get install cuda​

ubuntu的gcc编译器是5.4.0,然而cuda8.0不支持5.0以上的编译器,因此需要降级,把编译器版本降到4.9:

在terminal中执行:

sudo apt-get install gcc -4.9 gcc-5 g++-4.9 g++-5
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 10
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 10
sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
sudo update-alternatives --set cc /usr/bin/gcc
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
sudo update-alternatives --set c++ /usr/bin/g++

配置cuda8.0之后主要加上的一个环境变量声明,在文件~/.bashrc之后加上

gedit ~/.bashrc
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}


然后设置环境变量和动态链接库,在命令行输入

sudo gedit /etc/profile

在打开的文件里面加上(注意等号两边不能有空格)

export PATH=/usr/local/cuda/bin:$PATH

保存之后,创建链接文件

sudo gedit /etc/ld.so.conf.d/cuda.conf


在打开的文件中添加如下语句:

/usr/local/cuda/lib64


保存退出执行命令行:

sudo ldconfig


使链接立即生效。

2、测试cuda的Samples

命令行输入(注意cuda-8.0是要相对应自己的cuda版本)

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
make
sudo ./deviceQuery


返回GPU的信息则表示配置成功

3、使用cudnn

上官网下载对应的cudnn

https://developer.nvidia.com/cudnn

下载完cudnn后,命令行输入文件所在的文件夹 (ubuntu为本机用户名)

cd home/ubuntu/Downloads/
tar zxvf cudnn-8.0-linux-x64-v5.1.tgz #解压文件

cd进入cudnn5.1解压之后的include目录,在命令行进行如下操作:

sudo cp cudnn.h /usr/local/cuda/include/ #复制头文件

再cd进入lib64目录下的动态文件进行复制和链接:(5.1.5为对应版本具体可修改)

sudo cp lib* /usr/local/cuda/lib64/ #复制动态链接库
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.5 #删除原有动态文件
sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5 #生成软衔接
sudo ln -s libcudnn.so.5 libcudnn.so #生成软链接

4、安装opencv3.1.0

从官网上下载opencv3.1.0

http://opencv.org/downloads.html

并将其解压到你要安装的位置,(下载的位置还是在home/ubuntu、Downloads文件夹下)

首先安装Ubuntu系统需要的依赖项,虽然我也不知道有些依赖项是干啥的,但是只管装就行,也不会占据很多空间的。

sudo apt-get install --assume-yes libopencv-dev build-essential cmake git libgtk2.0-dev pkg-config python-dev python-numpy libdc1394-22 libdc1394-22-dev libjpeg-dev libpng12-dev libtiff5-dev libjasper-dev libavcodec-dev libavformat-dev libswscale-dev libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev libtbb-dev libqt4-dev libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev x264 v4l-utils unzip


然后安装OpenCV需要的一些依赖项,一些文件编码解码之类的小编。

sudo apt-get install build-essential cmake git
sudo apt-get install ffmpeg libopencv-dev libgtk-3-dev python-numpy python3-numpy libdc1394-22 libdc1394-22-dev libjpeg-dev libpng12-dev libtiff5-dev libjasper-dev libavcodec-dev libavformat-dev libswscale-dev libxine2-dev libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libv4l-dev libtbb-dev qtbase5-dev libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev x264 v4l-utils unzip


在终端中cd到opencv文件夹下(解压的那个文件夹),然后

mkdir build #新建一个build文件夹,编译的工程都在这个文件夹里
cd build/
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D WITH_V4L=ON -D WITH_QT=ON -D WITH_OPENGL=ON -DCUDA_NVCC_FLAGS="-D_FORCE_INLInes" ..(后面两点不要忘记)


cmake成功后,会出现如下结果,提示配置和生成成功:

-- Configuring done

-- Generating done

-- Build files have been written to: /home/ise/software/opencv-3.1.0/build

由于CUDA 8.0不支持OpenCV的 GraphCut 算法,可能出现以下错误:

/home/usrname/opencv-3.1.0/modules/cuDalegacy/src/graphcuts.cpp:120:54: error: 'NppiGraphcutState' has not been declared

typedef NppStatus (*init_func_t)(NppiSize oSize,NppiGraphcutState** ppStat

^

/home/usrname/opencv-3.1.0/modules/cuDalegacy/src/graphcuts.cpp:135:18: error: 'NppiGraphcutState' does not name a type

operator NppiGraphcutState*()

^

/home/usrname/opencv-3.1.0/modules/cuDalegacy/src/graphcuts.cpp:141:9: error: 'NppiGraphcutState' does not name a type

NppiGraphcutState* pState;

.......

进入opencv-3.1.0/modules/cuDalegacy/src/目录,修改graphcuts.cpp文件,将:

#include "precomp.hpp"

#if !defined (HAVE_CUDA) || defined (CUDA_disABLER)

改为

#include "precomp.hpp"

#if !defined (HAVE_CUDA) || defined (CUDA_disABLER) || (CUDART_VERSION >= 8000)

然后make编译就可以了

make -j8


上面是将opencv编译成功,但是并没有安装到我们的系统中,有很多的设置都没有写入到系统中,因此还要进行install。

sudo make install
sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
sudo ldconfig


重启系统,重启系统后cd到build文件夹下:

sudo apt-get install checkinstall
sudo checkinstall


然后按照提示安装就可以了。

使用checkinstall的目的是为了更好的管理我安装的opencv,因为opencv的安装很麻烦,卸载更麻烦,其安装的时候修改了一大堆的文件,当我想使用别的版本的opencv时,将当前版本的opencv卸载就是一件头疼的事情,因此需要使用checkinstall来管理我的安装。

执行了checkinstall后,会在build文件下生成一个以backup开头的.tgz的备份文件和一个以build开头的.deb安装文件,当你想卸载当前的opencv时,直接执行dpkg -r build即可。

5、配置caffe环境

切换编译器

选择g++ 5.0以上的对应编号

sudo update-alternatives --config g++


sudo update-alternatives --config gcc


安装依赖库

sudo add-apt-repository universe
sudo apt-get update -y
sudo apt-get install cmake -y


# General Dependencies

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev \
libhdf5-serial-dev protobuf-compiler -y
sudo apt-get install --no-install-recommends libboost-all-dev -y


# BLAS

sudo apt-get install libatlas-base-dev -y


# Remaining Dependencies

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev -y
sudo apt-get install python-dev python-numpy –y
sudo apt-get install -y python-pip
sudo apt-get install -y python-dev
sudo apt-get install -y python-numpy python-scipy


编译 Caffe,cd到要安装caffe的位置

git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config


修改Makefile.config:

gedit Makefile.config


对打开的文件编辑

# cuDNN acceleration switch (uncomment to build with cuDNN).

USE_CUDNN := 1

# Uncomment if you're using OpenCV 3 如果用的是opencv3版本

OPENCV_VERSION := 3

# Uncomment to support layers written in Python (will link against Python libs)

WITH_PYTHON_LAYER := 1

在问件里面添加文本由于hdf5库目录更改,所以需要单独添加:

INCLUDE_Dirs := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/

LIBRARY_Dirs := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

打开makefile文件

gedit Makefile


NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS)

替换

NVCCFLAGS += -D_FORCE_INLInes -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

编辑/usr/local/cuda/include/host_config.h,将其中的第115行注释掉:

sudo gedit /usr/local/cuda/include/host_config.h


#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!

改为

//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!

之后编辑即可

make -j4 all
make -j4 runtest


为了更好地使用pycaffe ,建议安装:

sudo apt-get install python-numpy python-setuptools python-pip cython python-skimage python-protobuf
make pycaffe
cd python
python
import caffe #测试安装成功


到这里Caffe开发环境就配置好了!

可以测试一下,输出AlexNet的时间测试结果:

cd ~/caffe
./build/tools/caffe time --gpu 0 --model ./models/bvlc_AlexNet/deploy.prototxt


6、theano安装

1、直接输入命令:

sudo pip install theano


2、配置参数文件:.theanorc

sudo gedit ~/.theanorc


对打开的文件进行编辑

[global]

floatX=float32

device=gpu

base_compiledir=~/external/.theano/

allow_gc=False

warn_float64=warn

[mode]=FAST_RUN

[nvcc]

fastmath=True

[cuda]

root=/usr/local/cuda

3、运行测试例子:

sudo Vim test.py


from theano import function,config,shared,sandBox

import theano.tensor as T

import numpy

import time

vlen = 10 * 30 * 768 # 10 x #cores x # threads per core

iters = 1000

rng = numpy.random.RandomState(22)

x = shared(numpy.asarray(rng.rand(vlen),config.floatX))

f = function([],T.exp(x))

print(f.maker.fgraph.toposort())

t0 = time.time()

for i in range(iters):

r = f()

t1 = time.time()

print("Looping %d times took %f seconds" % (iters,t1 - t0))

print("Result is %s" % (r,))

if numpy.any([isinstance(x.op,T.Elemwise) for x in f.maker.fgraph.toposort()]):

print('Used the cpu')

else:

print('Used the gpu')

可以看到结果:

/usr/bin/python2.7 /home/hjimce/PycharmProjects/untitled/.idea/temp.py

Using gpu device 0: GeForce GTX 960 (CNMeM is disabled,cuDNN not available)

[GpuElemwise{exp,no_inplace}(<CudandarrayType(float32,vector)>),HostFromGpu(GpuElemwise{exp,no_inplace}.0)]

Looping 1000 times took 0.302778 seconds

Result is [ 1.23178029 1.61879349 1.52278066 ...,2.20771813 2.29967761

1.62323296]

Used the gpu

说明安装成功

7、tensorflow 安装

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md

先安装anaconda

https://repo.continuum.io/archive/Anaconda2-4.2.0-Windows-x86_64.exe

上面的地址下载 该包默认在downloads里面

cd /home/username/Downloads
sudo bash Anaconda2-4.2.0-Linux-x86_64.sh


配置环境变量

gedit /etc/profile


末尾添上,我是一路yes下来,所以安在了root下,你可以自己选路径,这时候的环境变量要改

export PATH=/root/anaconda2/bin:$PATH

重启

打开终端

python


安装成功

2、创建conda环境 名字叫tensorflow

conda create -n tensorflow python=2.7
source activate tensorflow #使能该环境


#下面这句话只能下载给cpu用的tensorflow

conda install -c conda-forge tensorflow


利用pip来下载给GPU用的tensorflow

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl


下载安装

pip install --ignore-installed --upgrade $TF_BINARY_URL


安装IPython

conda install ipython


关掉该环境

source deactivate


测试安装是否正确

source activate tensorflow
python


输入

 
 
import tensorflow as tf
import numpy as np
# Create 100 phony x,y data points in NumPy,y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
# Try to find values for W and b that compute y_data = W * x_data + b
y_data = x_data * 0.1 + 0.3
# figure that out for us.)
# (We kNow that W should be 0.1 and b 0.3,but TensorFlow will
y = W * x_data + b
W = tf.Variable(tf.random_uniform([1],-1.0,1.0)) b = tf.Variable(tf.zeros([1]))
optimizer = tf.train.GradientDescentOptimizer(0.5)
# Minimize the mean squared errors. loss = tf.reduce_mean(tf.square(y - y_data)) train = optimizer.minimize(loss)
# Launch the graph.
# Before starting,initialize the variables. We will 'run' this first. init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) # Fit the line. for step in range(201):
# Learns best fit is W: [0.1],b: [0.3]
sess.run(train) if step % 20 == 0: print(step,sess.run(W),sess.run(b))

OK

8、Caffe配置错误

问题:找不到Python.h

解决:给anaconda添加环境变量

gedit ~/.banshrc


添加

export PATH=/root/anaconda2/bin:$PATH

export PYTHONPATH=/path/to/caffe/python:$PATH

修改Makefile.config

在终端输入

locate Python.h


gedit Makefile.config


在INCLUDE_Dirs 和LIBRARY_Dirs后面添上

/root/anaconda2/include/python2.7

启用

ANACONDA_HOME := $(HOME)/anaconda2

PYTHON_ INCLUDE =$(ANACONDA_HOME)/include\

,把前面的#去掉,那三行都去掉#,并在注释上面,

注释这两句PYTHON_INCLUDE := /usr/include/python2.7\

/usr/lib/python2.7…………..

如果编译的时候发现有错,回来改完之后又得重新编译一遍pycaffe,于是出现如下错误

make: nothing to be done for 'pycaffe'

则在终端输入

sudo make clean


修改完后再

sudo make pycaffe
这里要从make –j8 all那一步开始编译


编译完后,显示

然后 cd python进入该目录

python
import caffe


若此时提示错误:

Traceback (most recent call last)

File

ImportError: /home/../anaconda2/lib/python2.7/site-packages/zmq/backend/cython/../../../../.././libstdc++.so.6: versionGLIBCXX_3.4.21' not found

解决:

https://github.com/BVLC/caffe/issues/4953

https://gitter.im/BVLC/caffe/archives/2015/08/20

cd ..
pip install protobuf
sudo apt-get install python-protobuf
conda install libgcc

Ubuntu16.04 +cuda8.0+cudnn+caffe+theano+tensorflow配置明细的更多相关文章

  1. html5录音功能实战示例

    这篇文章主要介绍了html5录音功能实战示例的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  2. 基于 HTML5 WebGL 实现的医疗物流系统

    物联网( IoT ),简单的理解就是物体之间通过互联网进行链接。这篇文章给大家介绍基于 HTML5 WebGL 实现的医疗物流系统,感兴趣的朋友跟随小编一起看看吧

  3. HTML5页面无缝闪开的问题及解决方案

    这篇文章主要介绍了HTML5页面无缝闪开方案,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  4. HTML5跳转小程序wx-open-launch-weapp的示例代码

    这篇文章主要介绍了HTML5跳转小程序wx-open-launch-weapp的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  5. ios8 – iOS 8上的ptrace

    我试图在ptrace上调用一个像thisptrace一样的函数;但是当我尝试使用#include导入它时,Xcode会给我一个错误’sys/ptrace.h’文件找不到.我错过了什么,我是否需要导入一个库,或者这在iOS上根本不可用?

  6. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  7. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  8. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  9. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  10. ios – 与Xcode Bots持续集成

    我想使用Xcode机器人进行持续集成.我已经安装了OSXMavericks和Server(版本3).我可以使用Xcode5.0.1创建机器人.在集成时,它正在成功地执行分析测试,但总是最终的集成结果是失败的.IntegrationFailed.Unexpectedinternalservererror.Seetheintegration’slogsformoredetails.`我没有从服务器错误

随机推荐

  1. crontab发送一个月份的电子邮件

    ubuntu14.04邮件服务器:Postfixroot收到来自crontab的十几封电子邮件.这些邮件包含PHP警告.>我已经解决了这些警告的原因.>我已修复每个cronjobs不发送电子邮件(输出发送到>/dev/null2>&1)>我删除了之前的所有电子邮件/var/mail/root/var/spool/mail/root但我仍然每小时收到十几封电子邮件.这些电子邮件来自cronjobs,

  2. 模拟两个ubuntu服务器计算机之间的慢速连接

    我想模拟以下场景:假设我有4台ubuntu服务器机器A,B,C和D.我想在机器A和机器C之间减少20%的网络带宽,在A和B之间减少10%.使用网络模拟/限制工具来做到这一点?

  3. ubuntu-12.04 – 如何在ubuntu 12.04中卸载从源安装的redis?

    我从源代码在Ubuntu12.04上安装了redis-server.但在某些时候它无法完全安装,最后一次makeinstallcmd失败.然后我刚刚通过apt包安装.现在我很困惑哪个安装正在运行哪个conf文件?实际上我想卸载/删除通过源安装的所有内容,只是想安装一个包.转到源代码树并尝试以下命令:如果这不起作用,您可以列出软件自行安装所需的步骤:

  4. ubuntu – “apt-get source”无法找到包但“apt-get install”和“apt-get cache”可以找到它

    我正在尝试下载软件包的源代码,但是当我运行时它无法找到.但是当我运行apt-cache搜索squid3时,它会找到它.它也适用于apt-getinstallsquid3.我使用的是Ubuntu11.04服务器,这是我的/etc/apt/sources.list我已经多次更新了.我尝试了很多不同的debs,并没有发现任何其他地方的错误.这里的问题是你的二进制包(deb)与你的源包(deb-src)不

  5. ubuntu – 有没有办法检测nginx何时完成正常关闭?

    &&touchrestarted),因为即使Nginx没有完成其关闭,touch命令也会立即执行.有没有好办法呢?这样的事情怎么样?因此,pgrep将查找任何Nginx进程,而while循环将让它坐在那里直到它们全部消失.你可以改变一些有用的东西,比如睡1;/etc/init.d/Nginx停止,以便它会休眠一秒钟,然后尝试使用init.d脚本停止Nginx.你也可以在某处放置一个计数器,这样你就可以在需要太长时间时发出轰击信号.

  6. ubuntu – 如何将所有外发电子邮件从postfix重定向到单个地址进行测试

    我正在为基于Web的应用程序设置测试服务器,该应用程序发送一些电子邮件通知.有时候测试是使用真实的客户数据进行的,因此我需要保证服务器在我们测试时无法向真实客户发送电子邮件.我想要的是配置postfix,以便它接收任何外发电子邮件并将其重定向到一个电子邮件地址,而不是传递到真正的目的地.我正在运行ubuntu服务器9.10.先感谢您设置本地用户以接收所有被困邮件:你需要在main.cf中添加:然后

  7. ubuntu – vagrant无法连接到虚拟框

    当我使用基本的Vagrantfile,只配置了两条线:我看到我的虚拟框打开,但是我的流氓日志多次显示此行直到超时:然后,超时后的一段时间,虚拟框框终于要求我登录,但是太久了!所以我用流氓/流氓记录.然后在我的物理机器上,如果我“流氓ssh”.没有事情发生,直到:怎么了?

  8. ubuntu – Nginx – 转发HTTP AUTH – 用户?

    我和Nginx和Jenkins有些麻烦.我尝试使用Nginx作为Jenkins实例的反向代理,使用HTTP基本身份验证.它到目前为止工作,但我不知道如何传递带有AUTH用户名的标头?}尝试将此指令添加到您的位置块

  9. Debian / Ubuntu – 删除后如何恢复/ var / cache / apt结构?

    我在ubuntu服务器上的空间不足,所以我做了这个命令以节省空间但是现在在尝试使用apt时,我会收到以下错误:等等显然我删除了一些目录结构.有没有办法做apt-getrebuild-var-tree或类似的?

  10. 检查ubuntu上安装的rubygems版本?

    如何查看我的ubuntu盒子上安装的rubygems版本?只是一个想法,列出已安装的软件包和grep为ruby或宝石或其他:)dpkg–get-selections

返回
顶部