OpenCV-Python是一个Python库,旨在解决计算机视觉问题。

OpenCV是一个开源的计算机视觉库,1999年由英特尔的Gary Bradski启动。Bradski在访学过程中注意到,在很多优秀大学的实验室中,都有非常完备的内部公开的计算机视觉接口。这些接口从一届学生传到另一届学生,对于刚入门的新人来说,使用这些接口比重复造轮子方便多了。这些接口可以让他们在之前的基础上更有效地开展工作。OpenCV正是基于为计算机视觉提供通用接口这一目标而被策划的。

安装opencv

pip3 install -i https://pypi.doubanio.com/simple/ opencv-python

思路:

1、首先区分三张图片:

base图片代表初始化图片;

template图片代表需要在大图中匹配的图片;

white图片为需要替换的图片。

2、然后template图片逐像素缩小匹配,设定阈值,匹配度到达阈值的图片,判定为在初始图片中;否则忽略掉。

3、匹配到最大阈值的地方,返回该区域的位置(x,y)

4、然后用white图片resize到相应的大小,填补到目标区域。

match函数:

"""检查模板图片中是否包含目标图片"""
def make_cv2(photo1, photo2):
    global x, y, w, h, num_1,flag
    starttime = datetime.datetime.now()
    #读取base图片
    img_rgb = cv2.imread(f'{photo1}')
    #读取template图片
    template = cv2.imread(f'{photo2}')
    h, w = template.shape[:-1]
    print('初始宽高', h, w)
    res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
    print('初始最大相似度', res.max())
    threshold = res.max()
    """,相似度小于0.2的,不予考虑;相似度在[0.2-0.75]之间的,逐渐缩小图片"""
    print(threshold)
    while threshold >= 0.1 and threshold <= 0.83:
        if w >= 20 and h >= 20:
            w = w - 1
            h = h - 1
            template = cv2.resize(
                template, (w, h), interpolation=cv2.INTER_CUBIC)
            res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
            threshold = res.max()
            print('宽度:', w, '高度:', h, '相似度:', threshold)
        else:
            break
    """达到0.75覆盖之前的图片"""
    if threshold > 0.8:
        loc = np.where(res >= threshold)
        x = int(loc[1])
        y = int(loc[0])
        print('覆盖图片左上角坐标:', x, y)
        for pt in zip(*loc[::-1]):
            cv2.rectangle(
                img_rgb, pt, (pt[0]   w, pt[1]   h), (255, 144, 51), 1)
        num_1  = 1
        endtime = datetime.datetime.now()
        print("耗时:", endtime - starttime)
        overlay_transparent(x, y, photo1, photo3)
    else:
        flag = False

replace函数:

"""将目标图片镶嵌到指定坐标位置"""
def overlay_transparent(x, y, photo1, photo3):
    #覆盖图片的时候上下移动的像素空间
    y  = 4
    global w, h, num_2
    background = cv2.imread(f'{photo1}')
    overlay = cv2.imread(f'{photo3}')
    """缩放图片大小"""
    overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC)
    background_width = background.shape[1]
    background_height = background.shape[0]
    if x >= background_width or y >= background_height:
        return background
    h, w = overlay.shape[0], overlay.shape[1]
    if x   w > background_width:
        w = background_width - x
        overlay = overlay[:, :w]
    if y   h > background_height:
        h = background_height - y
        overlay = overlay[:h]
    if overlay.shape[2] < 4:
        overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,)
    overlay_image = overlay[..., :3]
    mask = overlay[..., 3:] / 255.0
    background[y:y   h,x:x   w] = (1.0 - mask) * background[y:y   h,x:x   w]   mask * overlay_image
    # path = 'result'
    path = ''
    cv2.imwrite(os.path.join(path, f'1.png'), background)
    num_2  = 1
    print('插入成功。')
    init()

每次执行需要初始化x,y(图片匹配初始位置参数),w,h(图片缩放初始宽高)

x = 0
y = 0
w = 0
h = 0
flag = True
threshold = 0
template = ''
num_1 = 0
num_2 = 0
photo3 = ''
"""参数初始化"""
def init():
    global x, y, w, h, threshold, template,flag
    x = 0
    y = 0
    w = 0
    h = 0
    threshold = 0
    template = ''

完整代码

import cv2
import datetime
import os
import numpy as np
x = 0
y = 0
w = 0
h = 0
flag = True
threshold = 0
template = ''
num_1 = 0
num_2 = 0
photo3 = ''
"""参数初始化"""
def init():
    global x, y, w, h, threshold, template,flag
    x = 0
    y = 0
    w = 0
    h = 0
    threshold = 0
    template = ''

"""检查模板图片中是否包含目标图片"""
def make_cv2(photo1, photo2):
    global x, y, w, h, num_1,flag
    starttime = datetime.datetime.now()
    img_rgb = cv2.imread(f'{photo1}')
    template = cv2.imread(f'{photo2}')
    h, w = template.shape[:-1]
    print('初始宽高', h, w)
    res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
    print('初始最大相似度', res.max())
    threshold = res.max()
    """,相似度小于0.2的,不予考虑;相似度在[0.2-0.75]之间的,逐渐缩小图片"""
    print(threshold)
    while threshold >= 0.1 and threshold <= 0.83:
        if w >= 20 and h >= 20:
            w = w - 1
            h = h - 1
            template = cv2.resize(
                template, (w, h), interpolation=cv2.INTER_CUBIC)
            res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
            threshold = res.max()
            print('宽度:', w, '高度:', h, '相似度:', threshold)
        else:
            break
    """达到0.75覆盖之前的图片"""
    if threshold > 0.8:
        loc = np.where(res >= threshold)
        x = int(loc[1])
        y = int(loc[0])
        print('覆盖图片左上角坐标:', x, y)
        for pt in zip(*loc[::-1]):
            cv2.rectangle(
                img_rgb, pt, (pt[0]   w, pt[1]   h), (255, 144, 51), 1)
        num_1  = 1
        endtime = datetime.datetime.now()
        print("耗时:", endtime - starttime)
        overlay_transparent(x, y, photo1, photo3)
    else:
        flag = False


"""将目标图片镶嵌到指定坐标位置"""
def overlay_transparent(x, y, photo1, photo3):
    y  = 0
    global w, h, num_2
    background = cv2.imread(f'{photo1}')
    overlay = cv2.imread(f'{photo3}')
    """缩放图片大小"""
    overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC)
    background_width = background.shape[1]
    background_height = background.shape[0]
    if x >= background_width or y >= background_height:
        return background
    h, w = overlay.shape[0], overlay.shape[1]
    if x   w > background_width:
        w = background_width - x
        overlay = overlay[:, :w]
    if y   h > background_height:
        h = background_height - y
        overlay = overlay[:h]
    if overlay.shape[2] < 4:
        overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,)
    overlay_image = overlay[..., :3]
    mask = overlay[..., 3:] / 255.0
    background[y:y   h,x:x   w] = (1.0 - mask) * background[y:y   h,x:x   w]   mask * overlay_image
    # path = 'result'
    path = ''
    cv2.imwrite(os.path.join(path, f'1.png'), background)
    num_2  = 1
    print('插入成功。')
    init()


if __name__ == "__main__":
    photo1 = "1.png"
    photo2 = "3.png"
    photo3 = "white.png"

    while flag == True:
        make_cv2(photo1, photo2)
        overlay_transparent(x, y, photo1, photo3)

执行结果:

到此这篇关于Python OpenCV实现图像识别替换功能详解的文章就介绍到这了,更多相关Python OpenCV图像识别替换内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python+OpenCV实现图像识别替换功能详解的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部