1 什么是 Numpy

NumPy,是 Numerical Python 的简称,用于高性能科学计算和数据分析的基础包,像数学科学工具(pandas)和框架(Scikit-learn)中都使用到了 NumPy 这个包。

NumPy 中的基本数据结构是ndarray或者 N 维数值数组,在形式上来说,它的结构有点像 Python 的基础类型——Python列表。

但本质上,这两者并不同,可以看到一个简单的对比。

我们创建两个列表,当我们创建好了之后,可以使用 运算符进行连接:

list1 = [i for i in range(1,11)]
list2 = [i**2 for i in range(1,11)]
print(list1 list2)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

列表中元素的处理感觉像对象,不是很数字,不是吗? 如果这些是数字向量而不是简单的数字列表,您会期望 运算符的行为略有不同,并将第一个列表中的数字按元素添加到第二个列表中的相应数字中。

接下来看一下 Nympy 的数组版本:

import numpy as np
arr1 = np.array(list1)
arr2 = np.array(list2)
arr1   arr2
# array([ 2, 6, 12, 20, 30, 42, 56, 72, 90, 110])

通过 numpy 的np.array数组方法实现了两个列表内的逐个值进行相加。

我们通过dir 函数来看两者的区别,先看 Python 内置列表 list1的内置方法:

再用同样的方法看一下 arr1中的方法:

NumPy 数组对象还有更多可用的函数和属性。 特别要注意诸如meanstdsum之类的方法,因为它们清楚地表明重点关注使用这种数组对象的数值/统计计算。 而且这些操作也很快。

2 NumPy 数组和 Python 内置计算对比

NumPy 的速度要快得多,因为它的矢量化实现以及它的许多核心例程最初是用 C 语言(基于 CPython 框架)编写的。 NumPy 数组是同构类型的密集排列的数组。 相比之下,Python 列表是指向对象的指针数组,即使它们都属于同一类型。 因此,我们得到了参考局部性的好处。

许多 NumPy 操作是用 C 语言实现的,避免了 Python 中的循环、指针间接和逐元素动态类型检查的一般成本。 特别是,速度的提升取决于您正在执行的操作。 对于数据科学和 ML 任务,这是一个无价的优势,因为它避免了长和多维数组中的循环。

让我们使用 @timing计时装饰器来说明这一点。 这是一个围绕两个函数 std_devstd_dev_python包装装饰器的代码,分别使用 NumPy 和本机 Python 代码实现列表/数组的标准差计算。

3 函数计算时间装饰器

我们可以使用 Python 装饰器和functools模块的wrapping来写一个 时间装饰器timing:

def timing(func):
@wraps(func)
def wrap(*args, **kw):
begin_time = time()
result = func(*args, **kw)
end_time = time()
print(f"Function '{func.__name__}' took {end_time-begin_time} seconds to run")
return result
return wrap

4 标准差计算公式

然后利用这个时间装饰器来看 Numpy 数组和 Python 内置的列表,然后计算他们的标准差,

公式如图:

  • 定义 Numpy 计算标准差的函数std_dev()numpy 模块中内置了标准差公式的函数 a.std(),我们可以直接调用
  • 列表计算公式方法需要按照公式一步一步计算:
  • 先求求出宗和s
  • 然后求出平均值average
  • 计算每个数值与平均值的差的平方,再求和sumsq
  • 再求出sumsq 的平均值 sumsq_average
  • 得到最终的标准差结果result

代码如下:

from functools import wraps
from time import time
import numpy as np
from math import sqrt
def timing(func):
@wraps(func)
def wrap(*args, **kw):
begin_time = time()
result = func(*args, **kw)
end_time = time()
# print(f"Function '{func.__name__}' with arguments {args},keywords {kw} took {end_time-begin_time} seconds to run")
print(f"Function '{func.__name__}' took {end_time-begin_time} seconds to run")
return result
return wrap

@timing
def std_dev(a):
if isinstance(a, list):
a = np.array(a)
s = a.std()
return s

@timing
def std_dev_python(lst):

length = len(lst)
s = sum(lst)
average = s / length
sumsq = 0
for i in lst:
sumsq  = (i-average)**2
sumsq_average = sumsq/length
result = sqrt(sumsq_average)
return result

运行结果,最终可以看到 1000000 个值得标准差的值为 288675.13459,而 Numpy 计算时间为 0.0080 s,而 Python 原生计算方式为 0.2499 s

由此可见,Numpy 的方式明显更快。

5 总结

NumPy 是专门针对数组的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,NumPy的优势就越明显。

到此这篇关于NumPy 与 Python 内置列表计算标准差区别详析的文章就介绍到这了,更多相关Python 内置列表内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

NumPy 与 Python 内置列表计算标准差区别详析的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部