前言

针对于一维数组的存储方式,即(n,)存储为列向量

一、创建一个array

使用np.arange()创建一个一维数组,或者np.array()将多维列表转成np格式的ndarray

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、使用np.r_和np.c_进行数组相加

1.对一维数组的叠加

代码如下(示例):

import numpy as np
a = np.array([1,2,3])     
'''a = [1 
        2
        3]'''
b = a.repeat(3)
'''b = [1
        1   
        1
       ...
        3]'''
c = np.tile(a ,3)
print(b.shape)      #(9,) 列向量
print(c.shape)      #(9,) 列向量
d = np.r_[b,c]    #按列相加 还是列向量(只是numpy方便显示,为一行数组),还是一维
print('d:', d)
'''d: [1 1 1 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3]'''
e = np.c_[b,c]   #按行相加 得到(9,2)的二维数组   
print('e:', e)
'''e: [[1 1]
       [1 2]
       [1 3]
       [2 1]
       [2 2]
       [2 3]
       [3 1]
       [3 2]
       [3 3]]'''

2.将数组转成二维

代码如下(示例):

a = np.array([1,2,3]).reshape(1,3)     #都初始为二维数组,就可以按照显示的行列堆叠
b = a.repeat(3).reshape(1,-1)
c = np.tile(a ,3)
print(b.shape)      #(1,9) 二维数组
print(c.shape)      #(1,9) 二维数组
#二维之后就可按照显示的行列顺序进行叠加了
d = np.r_[b,c]    #按列相加,得到(2,9)的二维数组
print('d:', d)    
'''d: [[1 1 1 2 2 2 3 3 3]
       [1 2 3 1 2 3 1 2 3]]'''
e = np.c_[b,c]   #按行相加 得到(1,18)的二维数组   
print('e:', e)
'''e: [[1 1 1 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3]]'''

将数组转成二维,就可按照显示的行列进行相堆叠了

3. hstack以及vstack

a = np.array([1,2,3])
b = a.repeat(3)
c = np.tile(a ,3)
bc_h = np.hstack((b, c))    
print('bc_h:',bc_h)
'''bc_h: [1 1 1 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3]'''
bc_v = np.vstack((b, c))    
print('bc_v:',bc_v)
'''bc_v: [[1 1 1 2 2 2 3 3 3]
          [1 2 3 1 2 3 1 2 3]]'''
d = np.arange(9).reshape(1,9)
# bcd_h = np.hstack((b, c, d))   #使用hstack,维度必须相同。不相同会报错
# print('bcd_h:',bcd_h)

bcd_v = np.vstack((b, c, d))    
print('bcd_v:',bcd_v)
'''bcd_v: [[1 1 1 2 2 2 3 3 3]
           [1 2 3 1 2 3 1 2 3]
           [0 1 2 3 4 5 6 7 8]]'''

在进行vstack叠加时,默认将一维数组元素变成了二维。

但是二维与三维叠加,二维不会变成三维。即一维可以与二维可以进行vstack

hstack不会改变维度,所有要求相叠加的所有数组维度一样

到此这篇关于numpy数组叠加的实现示例的文章就介绍到这了,更多相关numpy数组叠加内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

numpy数组叠加的实现示例的更多相关文章

  1. 详解Python NumPy中矩阵和通用函数的使用

    在NumPy中,矩阵是ndarray的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat 、 matrix 以及 bmat 函数来创建矩阵。本文将详细讲解NumPy中矩阵和通用函数的使用,感兴趣的可以了解一下

  2. Python数据分析 Numpy 的使用方法

    这篇文章主要介绍了Python数据分析 Numpy 的使用方法,Numpy 是一个Python扩展库,专门做科学计算,也是大部分Python科学计算库的基础,关于其的使用方法,需要的小伙伴可以参考下面文章内容

  3. Python Numpy中数组的集合操作详解

    这篇文章主要为大家详细介绍了Python Numpy中数组的一些集合操作方法,文中的示例代码讲解详细,对我们学习Python有一定帮助,需要的可以参考一下

  4. Numpy安装、升级与卸载的详细图文教程

    Python官网上的发行版是不包含 NumPy 模块的,下面这篇文章主要给大家介绍了关于Numpy安装、升级与卸载的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

  5. 基于numpy实现逻辑回归

    这篇文章主要为大家详细介绍了基于numpy实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  6. numpy中的converters和usecols用法详解

    本文主要介绍了numpy中的converters和usecols用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  7. Python Numpy中ndarray的常见操作

    这篇文章主要介绍了Python Numpy中ndarray的常见操作,NumPy是Python的一种开源的数值计算扩展,更多详细内容需要的朋友可以参考一下

  8. Python中的numpy数组模块

    这篇文章介绍了Python中的numpy数组模块,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  9. Python数据分析之NumPy常用函数使用详解

    本篇将介绍怎样从文件中载入数据,以及怎样使用NumPy的基本数学和统计分析函数、学习读写文件的方法,并尝试函数式编程和NumPy线性代数运算,来学习NumPy的常用函数,需要的可以参考一下

  10. Python中的Numpy 面向数组编程常见操作

    这篇文章主要介绍了Python中的Numpy 面向数组编程常见操作,使用Numpy数组可以使你利用简单的数组表达式完成多项数据操作任务,而不需要编写大量的循环,这个极大的帮助了我们高效的解决问题

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部