一、前言

近期在实际项目中使用到了PID控制算法,于是就该算法做一总结。

二、PID控制算法详解

2.1 比例控制算法

例子: 假设一个水缸,需要最终控制水缸的水位永远维持在1米的高度。

水位目标:T 当前水位:Tn 加水量:U 误差:error error=T-Tn 比例控制系数:kp U = k_p * errorU=kp​∗error initial: T=1; Tn=0.2, error=1-0.2=0.8; kp=0.4

2.1.1 比例控制python简单示意

T=1
Tn=0.2
error=1-0.2
kp=0.4

for t in range(1, 10):
    U = kp * error
    Tn  = U
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')
   
"""
t=1 | add 0.32000 => Tn=0.52000 error=0.48000
t=2 | add 0.19200 => Tn=0.71200 error=0.28800
t=3 | add 0.11520 => Tn=0.82720 error=0.17280
t=4 | add 0.06912 => Tn=0.89632 error=0.10368
t=5 | add 0.04147 => Tn=0.93779 error=0.06221
t=6 | add 0.02488 => Tn=0.96268 error=0.03732
t=7 | add 0.01493 => Tn=0.97761 error=0.02239
t=8 | add 0.00896 => Tn=0.98656 error=0.01344
t=9 | add 0.00537 => Tn=0.99194 error=0.00806
"""

2.1.2 比例控制存在的一些问题

根据kp取值不同,系统最后都会达到1米,只不过kp大了达到的更快。不会有稳态误差。 若存在漏水情况,在相同情况下,经过多次加水后,水位会保持在0.75不在再变化,因为当U和漏水量一致的时候将保持不变——即稳态误差 U=k_p*error=0.1 => error = 0.1/0.4 = 0.25U=kp​∗error=0.1=>error=0.1/0.4=0.25,所以误差永远保持在0.25

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1

for t in range(1, 100):
    U = kp * error
    Tn  = U - extra_drop
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')

"""
t=95 | add 0.10000 => Tn=0.75000 error=0.25000
t=96 | add 0.10000 => Tn=0.75000 error=0.25000
t=97 | add 0.10000 => Tn=0.75000 error=0.25000
t=98 | add 0.10000 => Tn=0.75000 error=0.25000
t=99 | add 0.10000 => Tn=0.75000 error=0.25000
"""

实际情况中,这种类似水缸漏水的情况往往更加常见

  • 比如控制汽车运动,摩擦阻力就相当于是"漏水"
  • 控制机械臂、无人机的飞行,各类阻力和消耗相当于"漏水"

所以单独的比例控制,很多时候并不能满足要求

2.2 积分控制算法(消除稳态误差)

比例 积分控制算法 

  • 误差累计
  • 积分控制系数

2.2.1 python简单实现

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1
ki=0.2
sum_error = 0

for t in range(1, 20):
    sum_error  = error
    U = kp * error   ki * sum_error
    Tn  = U - extra_drop
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')


"""
t=14 | add 0.10930 => Tn=0.97665 error=0.02335
t=15 | add 0.11025 => Tn=0.98690 error=0.01310
t=16 | add 0.10877 => Tn=0.99567 error=0.00433
t=17 | add 0.10613 => Tn=1.00180 error=-0.00180
t=18 | add 0.10332 => Tn=1.00512 error=-0.00512
t=19 | add 0.10097 => Tn=1.00608 error=-0.00608
"""

2.3 微分控制算法(减少控制中的震荡)

在越靠近目标的时候则加的越少。 

  • kd: 微分控制系数
  • d_error/d_t ~= error_t - error_t_1:误差的变化

3.3.1 加入微分控制算法的python简单示意

令:kd=0.2; d_error = 当前时刻误差-前时刻误差

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1

ki=0.2
sum_error = 0

kd=0.2
d_error = 0
error_n = 0
error_b = 0

for t in range(1, 20):
    error_b = error_n
    error_n = error
    # print(error_b1, error_b2)
    d_error = error_n - error_b if t >= 2 else 0
    sum_error  = error
    U = kp * error   ki * sum_error   kd * d_error
    Tn  = U - extra_drop
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')

"""
t=14 | add 0.09690 => Tn=0.96053 error=0.03947 | d_error: 0.01319
t=15 | add 0.10402 => Tn=0.96455 error=0.03545 | d_error: 0.00310
t=16 | add 0.10808 => Tn=0.97263 error=0.02737 | d_error: -0.00402
t=17 | add 0.10951 => Tn=0.98214 error=0.01786 | d_error: -0.00808
t=18 | add 0.10899 => Tn=0.99113 error=0.00887 | d_error: -0.00951
t=19 | add 0.10727 => Tn=0.99840 error=0.00160 | d_error: -0.00899
"""

2.4 PID算法总结

for kp_i in np.linspace(0, 1, 10): pid_plot(kp=kp_i, ki=0.2, kd=0.2)

for ki_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=ki_i, kd=0.2)

for kd_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=0.2, kd=kd_i)

pid_plot(kp=0.65, ki=0.05, kd=0.5, print_flag=True)

三、牛顿法调参

损失函数采用:RMSE

from scipy import optimize 
import matplotlib.pyplot as plt
import numpy as np

def pid_plot(args, plot_flag=True, print_flag=False):
    kp, ki, kd = args
    T=1
    Tn=0.2
    error=1-0.2
    extra_drop = 0.1
    sum_error = 0
    d_error = 0
    error_n = 0
    error_b = 0
    Tn_list = []
    for t in range(1, 100):
        error_b = error_n
        error_n = error
        d_error = error_n - error_b if t >= 2 else 0
        sum_error  = error
        U = kp * error   ki * sum_error   kd * d_error
        Tn  = U - extra_drop
        error = T-Tn
        Tn_list.append(Tn)
        if print_flag:
            print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')

    if plot_flag:
        plt.plot(Tn_list)
        plt.axhline(1, linestyle='--', color='darkred', alpha=0.8)
        plt.title(f'$K_p$={kp:.3f} $K_i$={ki:.3f} $K_d$={kd:.3f}')
        plt.ylim([0, max(Tn_list)   0.2])
        plt.show()

    loss = np.sqrt(np.mean(np.square(np.ones_like(Tn_list) - np.array(Tn_list))))
    return loss



boundaries=[(0, 2), (0, 2), (0, 2)]
res = optimize.fmin_l_bfgs_b(pid_plot, np.array([0.1, 0.1, 0.1]), args=(False, False), bounds = boundaries, approx_grad = True)

pid_plot(res[0].tolist(), print_flag=True)
pid_plot([0.65, 0.05, 0.5], print_flag=True)

牛顿法调参结果图示 :

简单手动调参图示:

到此这篇关于PID原理与python的简单实现和调参的文章就介绍到这了,更多相关PID与python内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

PID原理与python的简单实现和调参的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. android – Logcat Message中pid,uid和gids的含义是什么?

    解决方法这些是标准的Linux术语:>pid=进程ID>uid=拥有该进程的应用程序的用户ID>gid=拥有该进程的应用程序的组ID

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部