统计表中常常以本年累计、上年同期(累计)、当期(例如当月)完成、上月完成为统计数据,并进行同比、环比分析。

如下月报统计表所示样例,本文将使用Python Pandas工具进行统计。

在这里插入图片描述

其中:

  • (本年)累计:是指本年1月到截止月份的合计数
  • (上年)同期(累计):是指去年1月到与本年累计所对应截止月份的合计数
  • 同比(增长率)=(本期数-同期数)/同期数*100%
  • 环比(增长率)=(本期数-上期数)/上期数*100%

注:这里的本期是指本月完成或当月完成,上期数是指上月完成。

示例数据:

在这里插入图片描述

注:为了演示方便,本案例数据源仅使用2年,且每年5个月的数据。

1.(本年)累计

在做统计分析开发中,按年度、按月累计某些统计数据,是比较常见的需求。对于数据来说,就是按规则逐行累加数据。

Pandas中的cumsum()函数可以实现按某时间维度累计需求。

# 取本年累计值
import pandas as pd
df = pd.read_csv('data2021.csv')
cum_columns_name = ['cum_churncount','cum_newcount']
df[cum_columns_name] = df[['years','churncount','newcount']].groupby(['years']).cumsum()

注:其中分组‘years’是指年度时间维度累计。

计算结果如下:

在这里插入图片描述

2.(上年)同期累计

对于(上年)同期累计,将直接取上一年度累计值的同月份数据。pandas DataFrame.shift()函数可以把数据移动指定的行数。

在这里插入图片描述

接续上列,读取同期数据。首先是把‘yearmonth’上移五行,如上图所示得到新的DataFrame,通过‘yearmonth’进行两表数据关联(左关联:左侧为原表,右侧为移动后的新表),实现去同期数据效果。

cum_columns_dict = {'cum_churncount':'cum_same_period_churncount',
                        'cum_newcount':'cum_same_period_newcount'}
df_cum_same_period = df[['cum_churncount','cum_newcount','yearmonth']].copy()
df_cum_same_period = df_cum_same_period.rename(columns=cum_columns_dict)
#df_cum_same_period.loc[:,'yearmonth'] = df_cum_same_period['yearmonth'].shift(-12) # 一年12个月
df_cum_same_period.loc[:,'yearmonth'] = df_cum_same_period['yearmonth'].shift(-5)   # 由于只取5个月数据的原因
df = pd.merge(left=df,right=df_cum_same_period,on='yearmonth',how='left')

3. 上月(完成)

取上月的数据,使用pandas DataFrame.shift()函数把数据移动指定的行数。

接续上列,读取上期数据。(与取同期原理一样,略)

last_mnoth_columns_dict = {'churncount':'last_month_churncount',
                        'newcount':'last_month_newcount'}
df_last_month = df[['churncount','newcount','yearmonth']].copy()
df_last_month = df_last_month.rename(columns=last_mnoth_columns_dict)
df_last_month.loc[:,'yearmonth'] = df_last_month['yearmonth'].shift(-1)  # 移动一行
df = pd.merge(left=df,right=df_last_month,on='yearmonth',how='left')

4. 同比(增长率)

计算同比涉及到除法,需要剔除除数为零的数据。

df.fillna(0,inplace=True) # 空值填充为0 
# 计算同比
df.loc[df['cum_same_period_churncount']!=0,'cum_churncount_rat'] = (df['cum_churncount']-df['cum_same_period_churncount'])/df['cum_same_period_churncount'] # 除数不能为零
df.loc[df['cum_same_period_newcount']!=0,'cum_newcount_rat'] =  (df['cum_newcount']-df['cum_same_period_newcount'])/df['cum_same_period_newcount'] # 除数不能为零
df[['yearmonth','cum_churncount','cum_newcount','cum_same_period_churncount','cum_same_period_newcount','cum_churncount_rat','cum_newcount_rat']]

在这里插入图片描述

5. 环比(增长率)

# 计算环比
df.loc[df['last_month_churncount']!=0,'churncount_rat'] = (df['churncount']-df['last_month_churncount'])/df['last_month_churncount'] # 除数不能为零
df.loc[df['last_month_newcount']!=0,'newcount_rat'] =  (df['newcount']-df['last_month_newcount'])/df['last_month_newcount'] # 除数不能为零
df[['yearmonth','churncount','newcount','last_month_churncount','last_month_newcount','churncount_rat','newcount_rat']]

在这里插入图片描述

6. 总结

pandas做统计计算功能方法比较多,这里总结用到的技术有累计cumsum()函数、移动数据shift()函数、表合并关联merge()函数,以及通过loc条件修改数据。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持Devmax。

Pandas常用累计、同比、环比等统计方法实践过程的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  3. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  4. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  5. pandas数据类型之Series的具体使用

    本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  6. 通过5个例子让你学会Pandas中的字符串过滤

    毋庸置疑Pandas是使用最广泛的Python库之一,它提供了许多功能和方法来执行有效的数据处理和数据分析,下面这篇文章主要给大家介绍了关于如何通过5个例子让你学会Pandas中字符串过滤的相关资料,需要的朋友可以参考下

  7. pandas的排序、分组groupby及cumsum累计求和方式

    这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  8. Python Pandas 中的数据结构详解

    这篇文章主要介绍了Python Pandas 中的数据结构详解,Pandas有三种数据结构Series、DataFrame和Panel,文章围绕主题展开更多相关内容需要的小伙伴可以参考一下

  9. Python+Pandas实现数据透视表

    对于数据透视表,相信对于Excel比较熟悉的小伙伴都知道如何使用它。本文将利用Python Pandas实现数据透视表功能,感兴趣的可以学习一下

  10. Pandas sample随机抽样的实现

    随机抽样,是统计学中常用的一种方法,本文主要介绍了Pandas sample随机抽样的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部