1.stack()

stack()用于将列索引转换为最内层的行索引,这样叙述比较抽象,看示例就容易理解啦:

准备一组数据,给其设置双索引。

import pandas as pd
data = [['A类', 'a1', 123, 224, 254], ['A类', 'a2', 234, 135, 444], ['A类', 'a3', 345, 241, 324],
        ['B类', 'b1', 112, 412, 466], ['B类', 'b2', 224, 235, 345], ['B类', 'b3', 369, 214, 352],
        ['C类', 'c1', 236, 251, 485], ['C类', 'c2', 378, 216, 515], ['C类', 'c3', 135, 421, 312],
        ['D类', 'd1', 306, 325, 496], ['D类', 'd2', 147, 235, 524], ['D类', 'd3', 520, 222, 267]]
df = pd.DataFrame(data=data, columns=['类别', '编号', 'A指标', 'B指标', 'C指标'])
df = df.set_index(['类别', '编号'])
print(df)

df = df.stack()
print(df)

如图,成功将索引列之外的 A指标,B指标,C指标三列放在了同一列。

此时的df,不再是一个DataFrame,而变为了一个Series对象。:

print(type(df))

该Series的index列不同于原DataFrame的index列,而是在原DataFrame的index列的基础上,又增加了从右边合并过来的部分:

print(df.index)

此时Values为:

print(df.values)

2. unstack()

unstack是stack的逆向操作。

在上述示例的代码的基础上,对上边的df继续调用unstack()方法:

df1 = df.unstack()
print(df1)

可以看到unstack变回了原来的样子。

3. pivot()

这里对于上边例子中的数据稍作调整:

不设置多重索引

import pandas as pd
data = [['A类', '1', 123, 224, 254], ['A类', '2', 234, 135, 444], ['A类', '3', 345, 241, 324],
        ['B类', '1', 112, 412, 466], ['B类', '2', 224, 235, 345], ['B类', '3', 369, 214, 352],
        ['C类', '1', 236, 251, 485], ['C类', '2', 378, 216, 515], ['C类', '3', 135, 421, 312],
        ['D类', '1', 306, 325, 496], ['D类', '2', 147, 235, 524], ['D类', '3', 520, 222, 267]]
df = pd.DataFrame(data=data, columns=['类别', '编号', 'A指标', 'B指标', 'C指标'])
print(df)

df2 = df.pivot(index='编号', columns='类别', values='A指标')
print(df2)

index和columns分别指设定那一列的值为index,设置那一列的值为columns。values指表格要体现的指标。

df3 = df.pivot(index='类别', columns='编号', values='A指标')
print(df3)

总结

到此这篇关于python DataFrame中stack()方法、unstack()方法和pivot()方法的文章就介绍到这了,更多相关DataFrame stack()、unstack()和pivot()内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python DataFrame中stack()方法、unstack()方法和pivot()方法浅析的更多相关文章

  1. python DataFrame中stack()方法、unstack()方法和pivot()方法浅析

    这篇文章主要给大家介绍了关于python DataFrame中stack()方法、unstack()方法和pivot()方法的相关资料,pandas中这三种方法都是用来对表格进行重排的,其中stack()是unstack()的逆操作,需要的朋友可以参考下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部