箱线图

箱线图一般用来展现数据的分布,如上下四分位值、中位数等,也可以直观地展示异常点。Matplotlib提供了boxplot()函数绘制箱线图。

import matplotlib.pyplot as plt
_ = plt.boxplot(range(10))  # 10个数,0-9
plt.show()

请添加图片描述

箱线图虽然看起来简单,但包含的数据信息非常丰富。在上图中,橙色的线条表示中位数,中间条形的上下边界分别对应上四分位数(75%的数据都小于该值)与下四位分数(25%的数据小于该值),从条形延伸出两条线段,两条线段的终点表示数据的最大值最小值

import numpy as np

print(np.median(np.arange(10)))  # 中位数
print(np.percentile(np.arange(10), 25))  # 下4分位数,也叫第1分位数
print(np.percentile(np.arange(10), 75))  # 上4分位数,也叫第3分位数
4.5
2.25
6.75

Process finished with exit code 0

boxplot()函数还提供了丰富的自定义选项

plt.boxplot(x, notch=None, sym=None, vert=None,
            whis=None, positions=None, widths=None,
            patch_artist=None, meanline=None, showmeans=None,
            showcaps=None, showbox=None, showfliers=None,
            boxprops=None, labels=None, flierprops=None,
            medianprops=None, meanprops=None,
            capprops=None, whiskerprops=None)

x :绘图数据。

notch :是否以凹口的形式展现箱线图,默认非凹口。

sym:指定异常点的形状,默认为+号显示。

vert :是否需要将箱线图垂直放,默认垂直放。

whis :指定上下须与上下四分位的距离,默认为1.5倍的四分位差。

positions :指定箱线图位置,默认为[0,1,2.…]。

widths :指定箱线图宽度,默认为0.5。

patch _ artist :是否填充箱体的颜色。

meanline :是否用线的形式表示均值,默认用点表示。

showmeans :是否显示均值,默认不显示。

showcaps :是否显示箱线图顶端和末端两条线,默认显示。

showbox :是否显示箱线图的箱体,默认显示。

showfliers :是否显示异常值,默认显示。

boxprops :设置箱体的属性,如边框色、填充色等。

labels :为箱线图添加标签,类似于图例的作用。

filerprops :设置异常值的属性,如异常点的形状、大小、填充色等。

medianprops :设置中位数的属性,如线的类型、粗细等。

meanprops :设置均值的属性,如点的大小、颜色等。

capprops :设置箱线图顶端和末端线条的属性,如颜色、粗细等。

whiskerprops :设置须的属性,如颜色、粗细、线的类型等。

箱线图通常用在多组数据比较

下面代码展示了3组简单数据的箱线图,添加凹口、均值点、颜色以及每组的标签。

import matplotlib.pyplot as plt

a = plt.boxplot([range(10), range(20), range(30)],
                patch_artist=True,
                boxprops={'color': 'blue'},
                notch=True, showmeans=True,
                labels=['A', 'B', 'C'])
plt.show()

请添加图片描述

补充:plt.boxplot()函数绘制箱图、常用方法

实战

def plt_box_iamge(df):
    """
    snrr的五个范围为[5,10)、[10,15)、[15,20)、[20,30)、[30-),按照五个snrr范围计算对应redchi的箱图
    :param df:包含snrr以及redchi的csv数据(dataFrame)。
    :return:
    """
    # 根据snrr范围对redchi进行筛选。
    df1 = df.loc[df['lam_snrr'] >= 5]
    redchi_1 = df1.loc[df1['lam_snrr'] < 10].redchi

    df2 = df.loc[df['lam_snrr'] >= 10]
    redchi_2 = df2.loc[df2['lam_snrr'] < 15].redchi

    df3 = df.loc[df['lam_snrr'] >= 15]
    redchi_3 = df3.loc[df3['lam_snrr'] < 20].redchi

    df4 = df.loc[df['lam_snrr'] >= 20]
    redchi_4 = df4.loc[df4['lam_snrr'] < 30].redchi

    redchi_5 = df.loc[df['lam_snrr'] >= 30].redchi
    # 绘图
    ax = plt.subplot()
    ax.boxplot([redchi_1, redchi_2, redchi_3, redchi_4, redchi_5])
    # 设置轴坐标值刻度的标签
    ax.set_xticklabels(['5<=snrr<10', '10<=snrr<15', '15<=snrr<20', '20<=snrr<30', '30<=snrr'], fontsize=8)
    #    保存图片 
    plt.savefig('./images/box.jpg')
    plt.show()

if __name__ == '__main__':
    df = pd.read_csv('./inputfile/lamost6w_new.csv')
    df_sc = screening(df)  # 筛选数据 (lamost数据应该在正常值范围内,不然因为数值差过大会导致绘制不出图像!)
    plt_box_iamge(df_sc)

常用方法

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(100)
data = np.random.normal(size=(1000,4),loc=0,scale=1)

ax = plt.subplot()
ax.boxplot(data)                                 # 绘图
ax.set_xlim([0,5])                               # 设置x轴值的范围  rotation=30
# ax.set_xticks()                                    # 自定义x轴的值
ax.set_xlabel("xlabel")                  # 设置x轴的标签
ax.set_xticklabels(['A','B','C','D'],  rotation=30,fontsize=10)   # 设置x轴坐标值的标签 旋转角度 字体大小
ax.set_title("xcy")                             # 设置图像标题
ax.legend(labels= ['A','B','C','D'],loc='best',)  # 增加图例
ax.text(x=0.2 , y=3.5 , s="test" ,fontsize=12)   # 增加注

plt.show()

总结 

到此这篇关于Python Matplotlib绘制箱线图boxplot()函数详解的文章就介绍到这了,更多相关Matplotlib箱线图boxplot()函数内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python Matplotlib绘制箱线图boxplot()函数详解的更多相关文章

  1. Python数据分析之 Matplotlib 折线图绘制

    这篇文章主要介绍了Python数据分析之 Matplotlib 折线图绘制,在数据分析中,数据可视化也非常重要,下文通过数据分析展开对折线图的绘制,需要的小伙伴可以参考一下

  2. Python利用matplotlib画出漂亮的分析图表

    这篇文章主要介绍了Python利用matplotlib画出漂亮的分析图表,文章首先引入数据集展开详情,需要的朋友可以参考一下

  3. Python matplotlib包和gif包生成gif动画实战对比

    使用matplotlib生成gif动画的方法相信大家应该都看到过,下面这篇文章主要给大家介绍了关于Python matplotlib包和gif包生成gif动画对比的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

  4. Python Matplotlib通过plt.subplots创建子绘图

    这篇文章主要介绍了Python Matplotlib通过plt.subplots创建子绘图,plt.subplots调用后将会产生一个图表和默认网格,与此同时提供一个合理的控制策略布局子绘图,更多相关需要的朋友可以参考下面文章内容

  5. Python数据分析之 Matplotlib 散点图绘制

    这篇文章主要介绍了Python数据分析之 Matplotlib 散点图绘制,散点图又称散点图,是使用多个坐标点的分布反映数据点分布规律、数据关联关系的图表,下文对散点图的详细介绍及绘制,需要的小伙伴可以参考以一下

  6. 详解Python中matplotlib模块的绘图方式

    Matplotlib是Python中最受欢迎的数据可视化软件包之一,它是 Python常用的2D绘图库,同时它也提供了一部分3D绘图接口。本文将详细介绍Matplotlib的绘图方式,需要的可以参考一下

  7. matplotlib之Pyplot模块绘制三维散点图使用颜色表示数值大小

    在撰写论文时常常会用到matplotlib来绘制三维散点图,下面这篇文章主要给大家介绍了关于matplotlib之Pyplot模块绘制三维散点图使用颜色表示数值大小的相关资料,文中通过图文介绍的非常详细,需要的朋友可以参考下

  8. Python+matplotlib绘制条形图和直方图

    Matplotlib是Python的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。本文将为大家介绍如何用matplotlib绘制条形图和直方图,感兴趣的朋友可以学习一下

  9. 基于Python matplotlib库绘制箱线图

    这篇文章主要为大家分享了如何利用Python中的matplotlib库实现绘制箱线图与异常值的输出,文中的示例代码讲解详细,需要的可以参考一下

  10. python数据可视化matplotlib绘制折线图示例

    这篇文章主要为大家介绍了python数据可视化matplotlib绘制折线图的示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部