实现需求:

从网上(随便一个网址,我爬的网址会在评论区告诉大家,dddd)获取某一年的历史天气信息,包括每天最高气温、最低气温、天气状况、风向等,完成以下功能:

(1)将获取的数据信息存储到csv格式的文件中,文件命名为”城市名称.csv”,其中每行数据格式为“日期,最高温,最低温,天气,风向”;

(2)在数据中增加“平均温度”一列,其中:平均温度=(最高温 最低温)/2,在同一张图中绘制两个城市一年平均气温走势折线图;

(3)统计两个城市各类天气的天数,并绘制条形图进行对比,假设适合旅游的城市指数由多云天气占比0.3,晴天占比0.4,阴天数占比0.3,试比较两个城市中哪个城市更适合旅游;

(4)统计这两个城市每个月的平均气温,绘制折线图,并通过折线图分析该城市的哪个月最适合旅游;

(5)统计出这两个城市一年中,平均气温在18~25度,风力小于5级的天数,并假设该类天气数越多,城市就越适宜居住,判断哪个城市更适合居住;

爬虫代码:

import random
import time
from spider.data_storage import DataStorage
from spider.html_downloader import HtmlDownloader
from spider.html_parser import HtmlParser
class SpiderMain:
    def __init__(self):
        self.html_downloader=HtmlDownloader()
        self.html_parser=HtmlParser()
        self.data_storage=DataStorage()
    def start(self):
        """
        爬虫启动方法
        将获取的url使用下载器进行下载
        将html进行解析
        数据存取
        :return:
        """
        for i in range(1,13):  # 采用循环的方式进行依次爬取
            time.sleep(random.randint(0, 10))  # 随机睡眠0到40s防止ip被封
            url="XXXX"
            if i<10:
               url =url "20210" str(i) ".html"  # 拼接url
            else:
                url=url "2021" str(i) ".html"
            html=self.html_downloader.download(url)
            resultWeather=self.html_parser.parser(html)
            if i==1:
             t = ["日期", "最高气温", "最低气温", "天气", "风向"]
             resultWeather.insert(0,t)
            self.data_storage.storage(resultWeather)
if __name__=="__main__":
    main=SpiderMain()
    main.start()
import requests as requests
class HtmlDownloader:
    def download(self,url):
        """
        根据给定的url下载网页
        :param url:
        :return: 下载好的文本
        """
        headers = {"User-Agent":
                       "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:101.0) Gecko/20100101 Firefox/101.0"}
        result = requests.get(url,headers=headers)
        return result.content.decode('utf-8')

此处大家需要注意,将User-Agent换成自己浏览器访问该网址的,具体如何查看呢,其实很简单,只需大家进入网站后,右键网页,然后点击检查将出现这样的界面:

然后只需再点击网络,再随便点击一个请求,如下图:

就可以进入如下图,然后再复制,图中User-Agent的内容就好了!

继续:

from bs4 import BeautifulSoup
class HtmlParser:
    def parser(self,html):
        """
        解析给定的html
        :param html:
        :return: area set
        """
        weather = []
        bs = BeautifulSoup(html, "html.parser")
        body = bs.body  # 获取html中的body部分
        div = body.find('div', {'class:', 'tian_three'})  # 获取class为tian_three的<div></div>
        ul = div.find('ul')  # 获取div中的<ul></ul>
        li = ul.find_all('li')  # 获取ul中的所有<li></li>
        for l in li:
            tempWeather = []
            div1 = l.find_all("div")  # 获取当前li中的所有div
            for i in div1:
                tempStr = i.string.replace("℃", "")  # 将℃进行替换
                tempStr = tempStr.replace(" ", "")  # 替换空格
                tempWeather.append(tempStr)
            weather.append(tempWeather)
        return weather
import pandas as pd
class DataStorage:
    def storage(self,weather):
        """
        数据存储
        :param weather list
        :return:
        """
        data = pd.DataFrame(columns=weather[0], data=weather[1:])  # 格式化数据
        data.to_csv("C:\\Users\\86183\\Desktop\\成都.csv", index=False, sep=",",mode="a")  # 保存到csv文件当中

注意,文件保存路径该成你们自己的哦!

ok,爬取代码就到这,接下来是图形化效果大致如下:

代码如下:

import pandas as pd
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体
plt.rcParams["axes.unicode_minus"] = False  # 该语句解决图像中的“-”负号的乱码问题
def broken_line_chart(x, y1, y2):  # 折线图绘制函数
    plt.figure(dpi=500, figsize=(10, 5))
    plt.title("泸州-成都每日平均气温折线图")
    plt.plot(x, y1, color='cyan', label='泸州')
    plt.plot(x, y2, color='yellow', label='成都')
    # 获取图的坐标信息
    coordinates = plt.gca()
    # 设置x轴每个刻度的间隔天数
    xLocator = mpl.ticker.MultipleLocator(30)
    coordinates.xaxis.set_major_locator(xLocator)
    # 将日期旋转30°
    plt.xticks(rotation=30)
    plt.xticks(fontsize=8)
    plt.ylabel("温度(℃)")
    plt.xlabel("日期")
    plt.legend()
    plt.savefig("平均气温走势折线图.png")  # 平均气温折线图
    plt.show()
    plt.close()
data_luZhou = pd.read_csv('C:\\Users\\86183\\Desktop\\泸州.csv')
data_chengdu = pd.read_csv('C:\\Users\\86183\\Desktop\\成都.csv')
# 将列的名称转为列表类型方便添加
columS = data_luZhou.columns.tolist()
columY = data_chengdu.columns.tolist()
# 将数据转换为列表
data_luZhou=np.array(data_luZhou).tolist()
data_chengdu=np.array(data_chengdu).tolist()
# 在最开始的位置上添加列的名字
data_luZhou.insert(0, columS)
data_chengdu.insert(0, columY)
# 添加平均气温列
data_luZhou[0].append("平均气温")
data_chengdu[0].append("平均气温")
weather_dict_luZhou = {}
weather_dict_chengdu = {}
for i in range(1, len(data_luZhou)):
    # 去除日期中的星期
    data_luZhou[i][0] = data_luZhou[i][0][0:10]
    data_chengdu[i][0] = data_chengdu[i][0][0:10]
    # 获取平均气温
    average_luZhou = int((int(data_luZhou[i][1])   int(data_luZhou[i][2])) / 2)
    average_chengdu = int((int(data_chengdu[i][1])   int(data_chengdu[i][2])) / 2)
    # 将平均气温添加进入列表中
    data_luZhou[i].append(average_luZhou)
    data_chengdu[i].append(average_chengdu)
# 将新的数据存入新的csv中
new_data_luZhou = pd.DataFrame(columns=data_luZhou[0], data=data_luZhou[1:])
new_data_chengdu = pd.DataFrame(columns=data_chengdu[0], data=data_chengdu[1:])
new_data_luZhou.to_csv("D:/PythonProject/spider/泸州.csv", index=False, sep=",")
new_data_chengdu.to_csv("D:/PythonProject/spider/成都.csv", index=False, sep=",")
# 折线图的绘制
y1 = np.array(new_data_luZhou.get("平均气温")).tolist()
y2 = np.array(new_data_chengdu.get("平均气温")).tolist()
x = np.array(new_data_luZhou.get("日期")).tolist()
broken_line_chart(x, y1, y2)
# 进行每个月的平均气温求解
new_data_luZhou["日期"] = pd.to_datetime(new_data_luZhou["日期"])
new_data_chengdu["日期"] = pd.to_datetime(new_data_chengdu["日期"])
new_data_luZhou.set_index("日期", inplace=True)
new_data_chengdu.set_index("日期", inplace=True)
# 按月进行平均气温的求取
month_l = new_data_luZhou.resample('m').mean()
month_l = np.array(month_l).tolist()
month_c = new_data_chengdu.resample('m').mean()
month_c = np.array(month_c).tolist()
length = len(month_c)
month_average_l = []
month_average_c = []
for i in range(length):
    month_average_l.append(month_l[i][2])
    month_average_c.append(month_c[i][2])
month_list = [str(i)   "月" for i in range(1, 13)]
plt.figure(dpi=500, figsize=(10, 5))
plt.title("泸州-成都每月平均折线气温图")
plt.plot(month_list, month_average_l, color="cyan",label="泸州", marker='o')
plt.plot(month_list, month_average_c, color="blue",label='成都', marker='v')
for a, b in zip(month_list, month_average_l):
    plt.text(a, b   0.5, '%.2f' % b, horizontalalignment='center', verticalalignment='bottom', fontsize=6)
for a, b in zip(month_list, month_average_c):
    plt.text(a, b - 0.5, '%.2f' % b, horizontalalignment='center', verticalalignment='bottom', fontsize=6)
plt.legend()
plt.xlabel("月份")
plt.ylabel("温度(℃)")
plt.savefig("月平均气温折线图.png")  # 月平均气温折线图
plt.show()
#
# 只获取两列的数据
data_l = pd.read_csv("泸州.csv", usecols=['风向', '平均气温'])
data_c = pd.read_csv("成都.csv", usecols=['风向', '平均气温'])
data_l = np.array(data_l).tolist()
data_c = np.array(data_c).tolist()
day_c = 0
day_l = 0
for i in range(len(data_l)):
    if len(data_l[i][0]) == 5:
        if int(data_l[i][0][3]) < 5 and 18 <= int(data_l[i][1]) <= 25:
            day_l  = 1
    else:
        if int(data_l[i][0][2]) < 5 and 18 <= int(data_l[i][1]) <= 25:
            day_l  = 1
    if len(data_c[i][0]) == 5:
        if int(data_c[i][0][3]) < 5 and 10 <= int(data_c[i][1]) <= 25:
            day_c  = 1
    else:
        if int(data_c[i][0][2]) < 5 and 18 <= int(data_c[i][1]) <= 25:
            day_c  = 1
plt.figure(dpi=500, figsize=(8, 4))
plt.title("泸州-成都平均气温在18-25且风力<5级的天数")
list_name = ['泸州', '成都']
list_days = [day_l, day_c]
plt.bar(list_name, list_days, width=0.5)
plt.text(0, day_l, '%.0f' % day_l, horizontalalignment='center', verticalalignment='bottom', fontsize=7)
plt.text(1, day_c, '%.0f' % day_c, horizontalalignment='center', verticalalignment='bottom', fontsize=7)
plt.xlabel("城市")
plt.ylabel("天数(d)")
plt.savefig("适宜居住柱形图.png")
plt.show()
data_l=pd.read_csv("泸州.csv")
data_c=pd.read_csv("成都.csv")
# 将数据转换为列表
data_l=np.array(data_l).tolist()
data_c=np.array(data_c).tolist()
# 获取每种天气的天数,采用字典类型进行存储
for i in range(1,365):
    weather_l = data_l[i][3]
    weather_c = data_c[i][3]
    if weather_l in weather_dict_luZhou:
       weather_dict_luZhou[weather_l] = weather_dict_luZhou.get(weather_l)   1
    else:
       weather_dict_luZhou[weather_l]=1
    if weather_c in weather_dict_chengdu:
        weather_dict_chengdu[weather_c]=weather_dict_chengdu.get(weather_c) 1
    else:
       weather_dict_chengdu[weather_c]=1
weather_list_luZhou = list(weather_dict_luZhou)
weather_list_chengdu = list(weather_dict_chengdu)
value_l = []
value_c = []
# 获取所有的天气种类
weather_list = sorted(set(weather_list_luZhou   weather_list_chengdu))
# 获取每种天气的天数,并将其对应的放入列表中,没有的则用0进行替代,方便条形图的绘制。
for i in weather_list:
    if i in weather_dict_luZhou:
        value_l.append(weather_dict_luZhou[i])
    else:
        value_l.append(0)
    if i in weather_dict_chengdu:
        value_c.append(weather_dict_chengdu[i])
    else:
        value_c.append(0)
# 绘制条形图进行对比
plt.figure(dpi=500, figsize=(10, 5))
plt.title("泸州-成都各种天气情况对比")
x1 = list(range(len(weather_list)))
x = [i   0.4 for i in x1]
plt.bar(x1, value_l, width=0.4, color='red', label='泸州')
plt.bar(x, value_c, width=0.4, color='orange', label='成都')
for a, b in zip(x1, value_l):
    plt.text(a, b   0.4, '%.0f' % b, ha='center', va='bottom', fontsize=7)
for a, b in zip(x, value_c):
    plt.text(a, b   0.4, '%.0f' % b, ha='center', va='bottom', fontsize=7)
plt.xticks(x1, weather_list)
plt.ylabel("天数")
plt.xlabel("天气")
plt.xticks(rotation=270)
plt.legend()
plt.savefig("泸州成都天气情况对比.png")
plt.show()
plt.close()

好的这次就到这儿吧,我们下次见哦!!!

到此这篇关于Python实战实现爬取天气数据并完成可视化分析详解的文章就介绍到这了,更多相关Python爬取天气数据内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python实战实现爬取天气数据并完成可视化分析详解的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 免费的实战课程,用 Swift 写一个天气应用

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. SwiftWeather-Swift2实现的天气应用

    https://github.com/JakeLin/SwiftWeather

  6. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  9. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  10. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部