自定义求导:(近似求导数的方法)

让x向左移动eps得到一个点,向右移动eps得到一个点,这两个点形成一条直线,这个点的斜率就是x这个位置的近似导数。

eps足够小,导数就足够真。

def f(x):
    return 3. * x ** 2   2. * x - 1
def approximate_derivative(f, x, eps=1e-3):
    return (f(x   eps) - f(x - eps)) / (2. * eps)
print(approximate_derivative(f, 1.))

运行结果:

7.999999999999119

多元函数的求导

def g(x1, x2):
    return (x1   5) * (x2 ** 2)
def approximate_gradient(g, x1, x2, eps=1e-3):
    dg_x1 = approximate_derivative(lambda x: g(x, x2), x1, eps)
    dg_x2 = approximate_derivative(lambda x: g(x1, x), x2, eps)
    return dg_x1, dg_x2
print(approximate_gradient(g, 2., 3.))

运行结果:

(8.999999999993236, 41.999999999994486)

在tensorflow中的求导

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape() as tape:
    z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
print(dz_x1)

运行结果:

tf.Tensor(9.0, shape=(), dtype=float32)

但是tf.GradientTape()只能使用一次,使用一次之后就会被消解

try:
    dz_x2 = tape.gradient(z, x2)
except RuntimeError as ex:
    print(ex)

运行结果:

A non-persistent GradientTape can only be used to compute one set of gradients (or jacobians)

解决办法:设置persistent = True,记住最后要把tape删除掉

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape(persistent = True) as tape:
    z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
dz_x2 = tape.gradient(z, x2)
print(dz_x1, dz_x2)
del tape

运行结果:

tf.Tensor(9.0, shape=(), dtype=float32) tf.Tensor(42.0, shape=(), dtype=float32)

使用tf.GradientTape()

同时求x1,x2的偏导

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape() as tape:
    z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)

运行结果:

[<tf.Tensor: shape=(), dtype=float32, numpy=9.0>, <tf.Tensor: shape=(), dtype=float32, numpy=42.0>]

对常量求偏导

x1 = tf.constant(2.0)
x2 = tf.constant(3.0)
with tf.GradientTape() as tape:
    z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)

运行结果:

[None, None]

可以使用watch函数关注常量上的导数

x1 = tf.constant(2.0)
x2 = tf.constant(3.0)
with tf.GradientTape() as tape:
    tape.watch(x1)
    tape.watch(x2)
    z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)

运行结果:

[<tf.Tensor: shape=(), dtype=float32, numpy=9.0>, <tf.Tensor: shape=(), dtype=float32, numpy=42.0>]

也可以使用两个目标函数对一个变量求导:

x = tf.Variable(5.0)
with tf.GradientTape() as tape:
    z1 = 3 * x
    z2 = x ** 2
tape.gradient([z1, z2], x)

运行结果:

<tf.Tensor: shape=(), dtype=float32, numpy=13.0>

结果13是z1对x的导数加上z2对于x的导数

求二阶导数的方法

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape(persistent=True) as outer_tape:
    with tf.GradientTape(persistent=True) as inner_tape:
        z = g(x1, x2)
    inner_grads = inner_tape.gradient(z, [x1, x2])
outer_grads = [outer_tape.gradient(inner_grad, [x1, x2])
               for inner_grad in inner_grads]
print(outer_grads)
del inner_tape
del outer_tape

运行结果:

[[None, <tf.Tensor: shape=(), dtype=float32, numpy=6.0>], [<tf.Tensor: shape=(), dtype=float32, numpy=6.0>, <tf.Tensor: shape=(), dtype=float32, numpy=14.0>]]

结果是一个2x2的矩阵,左上角是z对x1的二阶导数,右上角是z先对x1求导,在对x2求导

左下角是z先对x2求导,在对x1求导,右下角是z对x2的二阶导数

学会自定义求导就可以模拟梯度下降法了,梯度下降就是求导,再在导数的位置前进一点点 模拟梯度下降法:

learning_rate = 0.1
x = tf.Variable(0.0)
for _ in range(100):
    with tf.GradientTape() as tape:
        z = f(x)
    dz_dx = tape.gradient(z, x)
    x.assign_sub(learning_rate * dz_dx)
print(x)

运行结果:

<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=-0.3333333>

结合optimizers进行梯度下降法

learning_rate = 0.1
x = tf.Variable(0.0)
optimizer = keras.optimizers.SGD(lr = learning_rate)
for _ in range(100):
    with tf.GradientTape() as tape:
        z = f(x)
    dz_dx = tape.gradient(z, x)
    optimizer.apply_gradients([(dz_dx, x)])
print(x)

运行结果:

<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=-0.3333333>

以上就是python人工智能自定义求导tf_diffs详解的详细内容,更多关于python自定义求导tf_diffs的资料请关注Devmax其它相关文章!

python人工智能自定义求导tf_diffs详解的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 如何在iPhone应用程序中集成SIRI?

    我正在开发一款iPad应用程序.我想在其中集成SIRI功能.所以,请指导我研究这个问题.其实我不知道如何开始.谢谢,CP解决方法直到现在苹果还没有发布siri的api用于第三方应用程序.如果您正在寻找文本到语音,语音到文本功能.有很多外部api像:>Nuance–Dragon>ispeech>OpenEars还有很多其他的api.OpenEars是一个开源离线api,另外两个是付费和在线的.

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. android – 是否有任何Google Now API可以将我们自己的应用程序集成到现在?

    如何向Google即时提供我的应用数据的信息或卡片?解决方法Google即时API仅适用于向Google注册其应用的用户,它是私有的.谷歌控制哪些卡将在他们的谷歌即时应用程序上显示.因此,您需要与Google联系并注册您的应用以获取NowAPI,然后您可以构建自己的Now卡.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部