Scipy自带了多种常见的分布,如正态分布、均匀分布、二项分布、多项分布、伽马分布等等,还可以自定义任意的概率分布。本文将介绍如何利用Scipy自定义任意的概率分布。

连续变量分布

考虑连续变量x满足如下概率密度分布函数:

其在实数域积分为1。我们可以通过scipy.stats中的rv_continuous类去实现这个分布,代码如下:

from scipy.stats import rv_continuous
import matplotlib.pyplot as plt
import numpy as np
class MyDistribution(rv_continuous):
    def _pdf(self, x):#概率密度分布函数
        return 2*sqrt(0.1)*exp(-0.1*x**2)*cos(x)**2/(sqrt(pi)*(exp(-10)   1))
distribution = MyDistribution()
xlist=np.linspace(-8,8,300)
ylist=distribution.pdf(xlist)
samples=distribution.rvs(size=200);#取200次样

fig,ax=plt.subplots(figsize=(8,6))
ax.plot(xlist,ylist,lw=3,color='red',label="$\mathrm{ideal}$");
ax.hist(samples,color='blue',density=True, bins=np.arange(-8,8,0.25), histtype='barstacked', rwidth=0.9,label=r"$\mathrm{samples}$")
ax.legend(fontsize=20);
ax.set_xlabel(r"$x$",size=25)
ax.set_ylabel(r"$\mathrm{PDF}$",size=20)
ax.set_xlim(-8,8);
ax.tick_params(axis='both',direction='in',width=1.3,length=3,top=1,right=1,labelsize=20,pad=2)
fig.tight_layout();
fig.show();

运行结果如下:

增加采样次数,分布直方图逐渐趋于理想的概率分布函数P(x)。

离散变量分布

考虑连续变量x满足泊松分布,则可以用scipy.stats中的rv_discrete类去实现这个分布,代码如下:

from scipy.stats import rv_discrete
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import factorial
class MyDistribution(rv_discrete):
    def _pmf(self, k, mu):
        return exp(-mu)*mu**k/factorial(k)
distribution = MyDistribution()
mu=2
samples=distribution.rvs(size=500,mu=mu);#取500次样
klist = np.arange(0,10,1)
plist = distribution.pmf(klist,mu)
fig, ax = plt.subplots()
ax.plot(klist, plist, 'ro', ms=12, mec='r',label="$\mathrm{ideal}$");
ax.hist(samples,color='blue',density=True, bins=klist, histtype='barstacked', rwidth=0.8,label=r"$\mathrm{samples}$",align="left")
ax.legend(fontsize=20);
fig.show();

运行结果如下:

可以修改上述MyDistribution类中的pmf函数,实现任意想要的离散分布。

二项分布Binomial Distribution

是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。

'''1、定义随机变量'''
# 比如5次掷硬币实验,正面朝上的次数
n2=5
x2=np.arange(1,n2 1,1)
x2
array([1, 2, 3, 4, 5])
'''2、求对应的概率质量函数 (PMF)'''
p2=0.5
pList2=stats.binom.pmf(x2,n2,p2)
# 返回一个列表,列表中每个元素表示随机变量中对应值的概率
pList2
array([0.15625, 0.3125 , 0.3125 , 0.15625, 0.03125])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x2,pList2,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x2, 0, pList2)
plt.xlabel('随机变量:抛硬币5次')
plt.ylabel('概率')
plt.title('二项分布:n=%d,p2=%0.2f' % (n2,p2))
plt.show()

几何分布Geometric Distribution

在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。

'''1、定义随机变量'''
# 比如射箭1次中靶的概率为90%,射5次箭
k=5
x3=np.arange(1,k 1,1)
x3
array([1, 2, 3, 4, 5])
'''2、求对应的概率质量函数 (PMF)'''
p3=0.7
pList3=stats.geom.pmf(x3,p3)
# 返回一个列表,表示在第i次射击中,第一次射中的概率
pList3
array([0.7    , 0.21   , 0.063  , 0.0189 , 0.00567])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x3,pList3,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x3, 0, pList3)
plt.xlabel('随机变量:射击5次')
plt.ylabel('概率')
plt.title('几何分布:n=%d,p=%0.2f' % (k,p3))
plt.show()

泊松分布Poisson Distribution

描述在某单位时间内,事件发生n次的概率

'''1、定义随机变量'''
# 某机器每季度发生故障平均为1次,那么在一年中机器发生10次的概率为
mu=4 # 平均值
k=10 # 要求发生10次的概率
x4=np.arange(1,k 1,1)
x4
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
'''2、求对应的概率质量函数 (PMF)'''
pList4=stats.poisson.pmf(x4,mu) # 一年的平均值为4
# 返回一个列表,表示1年中发生i次故障的概率
pList4
array([0.07326256, 0.14652511, 0.19536681, 0.19536681, 0.15629345,
       0.10419563, 0.05954036, 0.02977018, 0.01323119, 0.00529248])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x4,pList4,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x4, 0, pList4)
plt.xlabel('随机变量:发生k次故障')
plt.ylabel('概率')
plt.title('泊松分布:n=%d' % k)
plt.show()

到此这篇关于Python Scipy实现自定义任意的概率分布的文章就介绍到这了,更多相关Python Scipy概率分布内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python+Scipy实现自定义任意的概率分布的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部