yolov5的head修改为decouple head

yolox的decoupled head结构

本来想将yolov5的head修改为decoupled head,与yolox的decouple head对齐,但是没注意,该成了如下结构:

感谢少年肩上杨柳依依的指出,如还有问题欢迎指出

1.修改models下的yolo.py文件中的Detect

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc   5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        # self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.m_box = nn.ModuleList(nn.Conv2d(256, 4 * self.na, 1) for x in ch)  # output conv
        self.m_conf = nn.ModuleList(nn.Conv2d(256, 1 * self.na, 1) for x in ch)  # output conv
        self.m_labels = nn.ModuleList(nn.Conv2d(256, self.nc * self.na, 1) for x in ch)  # output conv
        self.base_conv = nn.ModuleList(BaseConv(in_channels = x, out_channels = 256, ksize = 1, stride = 1) for x in ch)
        self.cls_convs = nn.ModuleList(BaseConv(in_channels = 256, out_channels = 256, ksize = 3, stride = 1) for x in ch)
        self.reg_convs = nn.ModuleList(BaseConv(in_channels = 256, out_channels = 256, ksize = 3, stride = 1) for x in ch)
        
        # self.m = nn.ModuleList(nn.Conv2d(x, 4 * self.na, 1) for x in ch, nn.Conv2d(x, 1 * self.na, 1) for x in ch,nn.Conv2d(x, self.nc * self.na, 1) for x in ch)
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)self.ch = ch

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            # # x[i] = self.m[i](x[i])  # convs
            # print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", i)
            # print(x[i].shape)
            # print(self.base_conv[i])
            # print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
            
            
            
            x_feature = self.base_conv[i](x[i])
            # x_feature = x[i]
            
            cls_feature = self.cls_convs[i](x_feature)
            reg_feature = self.reg_convs[i](x_feature)
            # reg_feature = x_feature
            
            m_box = self.m_box[i](reg_feature)
            m_conf = self.m_conf[i](reg_feature)
            m_labels = self.m_labels[i](cls_feature)
            x[i] = torch.cat((m_box,m_conf, m_labels),1)
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5   self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5   self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

2.在yolo.py中添加

def get_activation(name="silu", inplace=True):
    if name == "silu":
        module = nn.SiLU(inplace=inplace)
    elif name == "relu":
        module = nn.ReLU(inplace=inplace)
    elif name == "lrelu":
        module = nn.LeakyReLU(0.1, inplace=inplace)
    else:
        raise AttributeError("Unsupported act type: {}".format(name))
    return module



class BaseConv(nn.Module):
    """A Conv2d -> Batchnorm -> silu/leaky relu block"""

    def __init__(
        self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"
    ):
        super().__init__()
        # same padding
        pad = (ksize - 1) // 2
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=ksize,
            stride=stride,
            padding=pad,
            groups=groups,
            bias=bias,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = get_activation(act, inplace=True)

    def forward(self, x):
        # print(self.bn(self.conv(x)).shape)
        return self.act(self.bn(self.conv(x)))
        # return self.bn(self.conv(x))

    def fuseforward(self, x):
        return self.act(self.conv(x))

decouple head的特点:

由于训练模型时,应该是channels = 256的地方改成了channels = x(失误),所以在decoupled head的部分参数量比yolox要大一些,以下的结果是在channels= x的情况下得出

比yolov5s参数多,计算量大,在我自己的2.5万的数据量下map提升了3%多

1.模型给出的目标cls较高,需要将conf的阈值设置较大(0.5),不然准确率较低

parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')

2.对于少样本的检测效果较好,召回率的提升比准确率多

3.在conf设置为0.25时,召回率比yolov5s高,但是准确率低;在conf设置为0.5时,召回率与准确率比yolov5s高

4.比yolov5s参数多,计算量大,在2.5万的数据量下map提升了3%多

对于decouple head的改进

改进:

1.将红色框中的conv去掉,缩小参数量和计算量;

2.channels =256 ,512 ,1024是考虑不增加参数,不进行featuremap的信息压缩

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc   5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5   self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5   self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

特点

1.模型给出的目标cls较高,需要将conf的阈值设置较大(0.4),不然准确率较低

2.对于少样本的检测效果较好,准确率的提升比召回率多

3. 准确率的提升比召回率多,

该改进不如上面的模型提升多,但是参数量小,计算量小少9Gflop,占用显存少

decoupled head指标提升的原因:由于yolov5s原本的head不能完全的提取featuremap中的信息,decoupled head能够较为充分的提取featuremap的信息;

疑问

为什么decoupled head目标的cls会比较高,没想明白

为什么去掉base_conv,召回率要比准确率提升少

总结

到此这篇关于yolov5中head修改为decouple head的文章就介绍到这了,更多相关yolov5 head修改为decouple head内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

yolov5中head修改为decouple head详解的更多相关文章

  1. YOLOv5改进教程之添加注意力机制

    注意力机制最先被用在NLP领域,Attention就是为了让模型认识到数据中哪一部分是最重要的,为它分配更大的权重,获得更多的注意力在一些特征上,让模型表现更好,这篇文章主要给大家介绍了关于YOLOv5改进教程之添加注意力机制的相关资料,需要的朋友可以参考下

  2. YOLOV5超参数介绍以及优化策略

    yolov5提供了一种超参数优化的方法,这篇文章主要给大家介绍了关于YOLOV5超参数介绍以及优化策略的相关资料,文中通过实例代码介绍的非常详细,对大家的学习或工具有一定的参考学习价值,需要的朋友可以参考下

  3. Pytorch搭建YoloV5目标检测平台实现过程

    这篇文章主要为大家介绍了Pytorch搭建YoloV5目标检测平台实现过程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. 如何将Yolov5的detect.py修改为可以直接调用的函数详解

    YOLOv4还没有退热,YOLOv5已经发布,下面这篇文章主要给大家介绍了关于如何将Yolov5的detect.py修改为可以直接调用的函数的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  5. yolov5中anchors设置实例详解

    在YOLOV5算法之中,针对不同的数据集,一般会预先设置固定的Anchor,下面这篇文章主要给大家介绍了关于yolov5中anchors设置的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

  6. yolov5模型配置yaml文件详细讲解

    YOLOV5模型配置文件存放在modules文件夹下,这里使用的是 yolov5s.yaml,下面这篇文章主要给大家介绍了关于yolov5模型配置yaml文件的相关资料,需要的朋友可以参考下

  7. YOLOv5目标检测之anchor设定

    在训练yolo网络检测目标时,需要根据待检测目标的位置大小分布情况对anchor进行调整,使其检测效果尽可能提高,下面这篇文章主要给大家介绍了关于YOLOv5目标检测之anchor设定的相关资料,需要的朋友可以参考下

  8. 关于yolov5的一些简单说明(txt文件、训练结果分析等)

    使用YOLOV5训练数据之后我们需要一些评判标准来告诉我们所训练的效果究竟如何,下面这篇文章主要给大家介绍了关于yolov5的一些简单说明,主要是txt文件、训练结果分析等的相关资料,需要的朋友可以参考下

  9. YOLOv5改进之添加SE注意力机制的详细过程

    作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法,下面这篇文章主要给大家介绍了关于YOLOv5改进之添加SE注意力机制的相关资料,需要的朋友可以参考下

  10. YOLOv5中SPP/SPPF结构源码详析(内含注释分析)

    其实关于YOLOv5的网络结构其实网上相关的讲解已经有很多了,但是觉着还是有必要再给大家介绍下,下面这篇文章主要给大家介绍了关于YOLOv5中SPP/SPPF结构源码的相关资料,需要的朋友可以参考下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部