大家好,我是早起。

最近在知乎上看到这样一个问题

图片

题主表示pandas用起来很乱,事实真的如此吗?本文就将先如何利用pandas来行数据转换/编码的十种方案,最后再回答这个问题。

其实这个操作在机器学习中十分常见,很多算法都需要我们对分类特征进行转换(编码),即根据某一列的值,新增(修改)一列。

为了方便理解,下面创建示例DataFrame

图片

数值型数据

让我们先来讨论连续型数据的转换,也就是根据Score列的值,来新增一列标签,即如果分数大于90,则标记为A,分数在80-90标记为B,以此类推。

自定义函数 循环遍历

首先当然是最简单,最笨的方法,自己写一个函数,并用循环遍历,那肯定就是一个def加一个for

df1 = df.copy()

def myfun(x):
    if x>90:
        return 'A'
    elif x>=80 and x<90:
        return 'B'
    elif x>=70 and x<80:
        return 'C'
    elif x>=60 and x<70:
        return 'D'
    else:
        return 'E'
    
df1['Score_Label'] = None
for i in range(len(df1)):
    df1.iloc[i,3] = myfun(df1.iloc[i,2])

这段代码,相信所有人都能看懂,简单好想但比较麻

图片

有没有更简单的办法呢?pandas当然提供了很多高效的操作的函数,继续往下看。

自定义函数 map

现在,可以使用map来干掉循环(虽然本质上也是循环)

df2 = df.copy()

def mapfun(x):
    if x>90:
        return 'A'
    elif x>=80 and x<90:
        return 'B'
    elif x>=70 and x<80:
        return 'C'
    elif x>=60 and x<70:
        return 'D'
    else:
        return 'E'

df2['Score_Label'] = df2['Score'].map(mapfun)

结果是同样的

图片

自定义函数 apply

如果还想简洁代码,可以使用自定义函数 apply来干掉自定义函数

df3 = df.copy()
df3['Score_Label'] = df3['Score'].apply(lambda x: 'A' if x > 90 else (
    'B' if 90 > x >= 80 else ('C' if 80 > x >= 70 else ('D' if 70 > x >= 60 else 'E'))))

结果和上面是一致的,只不过这么写容易被打。

使用 pd.cut

现在,让我们继续了解更高级的pandas函数,依旧是对 Score 进行编码,使用pd.cut,并指定划分的区间后,可以直接帮你分好组

df4 = df.copy()
bins = [0, 59, 70, 80, 100]
df4['Score_Label'] = pd.cut(df4['Score'], bins)

图片

也可以直接使用labels参数来修改对应组的名称,是不是方便多了

df4['Score_Label_new'] = pd.cut(df4['Score'], bins, labels=[
                                'low', 'middle', 'good', 'perfect'])

图片

使用 sklearn 二值化

既然是和机器学习相关,sklearn肯定跑不掉,如果需要新增一列并判定成绩是否及格,就可以使用Binarizer函数,代码也是简洁好懂

df5 = df.copy()
binerize = Binarizer(threshold = 60)
trans = binerize.fit_transform(np.array(df1['Score']).reshape(-1,1))
df5['Score_Label'] = trans

图片

文本型数据

下面介绍更常见的,对文本数据进行转换打标签。例如新增一列,将性别男、女分别标记为0、1

使用 replace

首先介绍replace,但要注意的是,上面说过的自定义函数相关方法依旧是可行的

df6 = df.copy()
df6['Sex_Label'] = df6['Sex'].replace(['Male','Female'],[0,1])

图片

上面是对性别操作,因为只有男女,所以可以手动指定0、1,但要是类别很多,也可以使用pd.value_counts()来自动指定标签,例如对Course Name列分组

df6 = df.copy()
value = df6['Course Name'].value_counts()
value_map = dict((v, i) for i,v in enumerate(value.index))
df6['Course Name_Label'] = df6.replace({'Course Name':value_map})['Course Name']

图片

使用map

额外强调的是,新增一列,一定要能够想到map

df7 = df.copy()
Map = {elem:index for index,elem in enumerate(set(df["Course Name"]))}
df7['Course Name_Label'] = df7['Course Name'].map(Map)

图片

使用astype

这个方法应该很多人不知道,这就属于上面提到的知乎问题,能实现的方法太多了

df8 = df.copy()
value = df8['Course Name'].astype('category')
df8['Course Name_Label'] = value.cat.codes

图片

使用 sklearn

同数值型一样,这种机器学习中的经典操作,sklearn一定有办法,使用LabelEncoder可以对分类数据进行编码

from sklearn.preprocessing import LabelEncoder
df9 = df.copy()
le = LabelEncoder()
le.fit(df9['Sex'])
df9['Sex_Label'] = le.transform(df9['Sex'])
le.fit(df9['Course Name'])
df9['Course Name_Label'] = le.transform(df9['Course Name'])

图片

一次性转换两列也是可以的

df9 = df.copy()
le = OrdinalEncoder()
le.fit(df9[['Sex','Course Name']])
df9[['Sex_Label','Course Name_Label']] = le.transform(df9[['Sex','Course Name']])

使用factorize

最后,再介绍一个小众但好用的pandas方法,我们需要注意到,在上面的方法中,自动生成的Course Name_Label列,虽然一个数据对应一个语言,因为避免写自定义函数或者字典,这样可以自动生成,所以大多是无序的。

如果我们希望它是有序的,也就是 Python 对应 0Java对应1,除了自己指定,还有什么优雅的办法?这时可以使用factorize,它会根据出现顺序进行编码

df10 = df.copy()
df10['Course Name_Label'] = pd.factorize(df10['Course Name'])[0]

图片

结合匿名函数,我们可以做到对多列进行有序编码转换

df10 = df.copy()
cat_columns = df10.select_dtypes(['object']).columns

df10[['Sex_Label', 'Course Name_Label']] = df10[cat_columns].apply(
    lambda x: pd.factorize(x)[0])

图片

总结

至此,我要介绍的十种pandas数据编码的方法就分享完毕,代码拿走修改变量名就能用

现在回到文章开头的问题,如果你觉得pandas用起来很乱,说明你可能还未对pandas有一个全面且彻底的了解。

其实就像本文介绍数据编码转换一样,确实有很多方法可以实现显得很乱,但学习pandas的正确姿势就是应该把它当成字典来学,不必记住所有方法与细节,你只需知道有这么个函数能完成这样操作,需要用时能想到,想到再来查就行。

以上就是Pandas进行数据编码的十种方式总结的详细内容,更多关于Pandas数据编码的资料请关注Devmax其它相关文章!

Pandas进行数据编码的十种方式总结的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  3. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  4. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  5. 浅谈Web页面向后台提交数据的方式和选择

    下面小编就为大家带来一篇浅谈Web页面向后台提交数据的方式和选择。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  6. Java创建线程的方式解析

    这篇文章主要介绍了Java创建线程的方式解析,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下,希望对你的学习有所帮助

  7. pandas数据类型之Series的具体使用

    本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  8. 通过5个例子让你学会Pandas中的字符串过滤

    毋庸置疑Pandas是使用最广泛的Python库之一,它提供了许多功能和方法来执行有效的数据处理和数据分析,下面这篇文章主要给大家介绍了关于如何通过5个例子让你学会Pandas中字符串过滤的相关资料,需要的朋友可以参考下

  9. pandas的排序、分组groupby及cumsum累计求和方式

    这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  10. Python Pandas 中的数据结构详解

    这篇文章主要介绍了Python Pandas 中的数据结构详解,Pandas有三种数据结构Series、DataFrame和Panel,文章围绕主题展开更多相关内容需要的小伙伴可以参考一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部