最近导师让我跑模型,生物信息方向的,我一个学计算机的,好多东西都看不明白。现在的方向大致是,用深度学习的模型预测病毒感染人类的风险。

既然是病毒,就需要拿到它的DNA,也就是碱基序列,然后把这些ACGT序列丢进模型里面,然后就是预测能不能感染人类,说实话,估计结果不会好,现在啥都是transformer,而且我看的这篇论文,我认为仅仅从DNA序列大概预测不出什么东西。

但是就那样吧,现在数据去哪里下载,需要下载什么样的数据,下载完成后怎么处理我还是一脸懵逼,但是假设上面都处理好了,然后即使把数据丢给模型,跑就完了。

也不是没进度,目前了解到的是,我应该使用一种叫fasta格式的文件,然后把里面的一大串ACGT序列拿出来,转为模型可以处理的数据。然后,以后再说。

现在假设我已经有了ACGT的序列,然后把它转为模型可以处理的矩阵。

这里,我随机生成长度为131072的基因序列,为什么是这个数字呢,因为这是之前看的 论文里的值,,暂时按照这个来做。

实现:

首先是导入库

import numpy as np
import random
import tensorflow as tf
import inspect
from typing import Any, Callable, Dict, Optional, Text, Union, Iterable
import os

然后,定义一个生成长度为131072bp的函数:

#随机生成131072的dna序列
length = 131072
def randomSeq(length):
  return ''.join([random.choice('ACGT') for i in range(length)])

这个函数的返回结果是长度为length的字符串,类似ACGTTGC这样。

然后这种序列模型是没办法处理的,所以需要把它变成矩阵,也就用one-hot编码。

比如ACGT这个序列,编码成:

[ [1,0,0,0],

[0,1,0,0],

[0,0,1,0],

[0,0,0,1] ]

这样的一个矩阵,这个就不细说了,网上很多资料。

然后,我从别人的代码中抄了一个函数,很好用。

#DNA序列转为one-hot编码,可以直接拿来用
def one_hot_encode(sequence: str,
                   alphabet: str = 'ACGT',
                   neutral_alphabet: str = 'N',
                   neutral_value: Any = 0,
                   dtype=np.float32) -> np.ndarray:
  """One-hot encode sequence."""
  def to_uint8(string):
    return np.frombuffer(string.encode('ascii'), dtype=np.uint8)
  hash_table = np.zeros((np.iinfo(np.uint8).max, len(alphabet)), dtype=dtype)
  hash_table[to_uint8(alphabet)] = np.eye(len(alphabet), dtype=dtype)
  hash_table[to_uint8(neutral_alphabet)] = neutral_value
  hash_table = hash_table.astype(dtype)
  return hash_table[to_uint8(sequence)]

这是一个嵌套函数了,仔细研究下还是可以理解的,我就不说了,会用就行了。

简单讲一下参数的意思:

sequence:字符串类型,就是输入的碱基序列。

alphabet: str = ‘ACGT’ :词表,一共只需要这四个词

neutral_alphabet: str = ‘N’,

neutral_value: Any = 0,

上面这两一起用,就是说遇到N这个碱基就会编码成[0,0,0,0]的向量。

dtype=np.float32,这个就是内部元素值的类型。

简单生成一下:

然后输入序列长度是131072bp,所以输入的矩阵就是131072x4的矩阵,现在来把序列变为矩阵。

编码成one-hot矩阵

dnaVec = one_hot_encode(dna)

现在DNA序列已经变成了矩阵,接下来需要把这一条序列,也就是一个样本数据,变成TensorFlow中的TFRecord文件格式。TFRecord 是 TensorFlow 中的数据集存储格式。当我们将数据集整理成 TFRecord 格式后,TensorFlow 就可以高效地读取和处理这些数据集,从而帮助我们更高效地进行大规模的模型训练。

关于tfr文件的处理,我就不在细说了,总之现在我们需要构建example。

在此之前,我们需要先这么做:

#给出结果的tfr文件的路径
path = '/content/drive/MyDrive/test_Enformer/result.tfr'
#dna的numpy数组转成字节流,这样才能存储
dnaVec = dnaVec.tobytes()

接下来就是把这个字节流数据写入到tfr文件中,这里同时写入这条数据的label中,我的问题是给一个Dna序列,预测是或者不是的二分类问题,所以我同时把这条dna序列对应的真实标签也写进去,但是我是随机从0,1中选择一个。

from tensorflow.core.example.feature_pb2 import BytesList
with tf.io.TFRecordWriter(path) as writer:
  feature = {
      #序列使用的是tf.train.BytesList类型
      'sequence':tf.train.Feature(bytes_list=tf.train.BytesList(value=[dnaVec])),
      #label是随机生成的0,或者1
      'label':tf.train.Feature(int64_list=tf.train.Int64List(value=[np.random.choice([0,1])]))
  }
  example = tf.train.Example(features=tf.train.Features(feature=feature))
  writer.write(example.SerializeToString())

这部分的代码执行结束后,就已经把dna序列以及对应的标签写入了tfr文件中,不过这个tfr文件中只有一个example,你可以写更多个。

刚刚写入的tfr文件

到这里,相当于已经把数据准备好了,接下来就是读取数据。

#从刚才的路径中加载数据集
dataset = tf.data.TFRecordDataset(path)
#定义Feature结构,告诉解码器每个Feature的类型是什么
feature_description = {"sequence": tf.io.FixedLenFeature((), tf.string),
              "label": tf.io.FixedLenFeature((), tf.int64)}
 #将 TFRecord 文件中的每一个序列化的 tf.train.Example 解码
def parse_example(example_string):
  #解析之后得到的example
  example = tf.io.parse_single_example(example_string,feature_description)
  #example['sequence']还是字节流的形式,重新转为数字向量
  sequence = tf.io.decode_raw(example['sequence'], tf.float32)
  sequence = tf.reshape(sequence,(length,4))  #形状需要重塑,不然就是一个长向量
  label = tf.cast(example['label'],tf.int64)  #标签对应的类型转换
#每一天example解析后返回对应的一个字典
  return {
      'sequence':sequence,
      'label': label
  }
#把parse_example函数映射到dataset中的每个example,
#这里的dataset中只有一个example
dataset = dataset.map(parse_example)

此时的dataset是一个可以遍历的对象,内部元素可以认为是解析完成后的example。

这个字典有两个键sequence和lable,对应着序列矩阵和标签值

这就是可以用来训练的数据。

到此这篇关于Python实现将DNA序列存储为tfr文件并读取流程介绍的文章就介绍到这了,更多相关Python存储tfr文件内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python实现将DNA序列存储为tfr文件并读取流程介绍的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部