参数数量及其作用

该函数共有五个参数,分别是:

  • 被赋值的变量 ref
  • 要分配给变量的值 value、
  • 是否验证形状 validate_shape
  • 是否进行锁定保护 use_locking
  • 名称 name
def assign(ref, value, validate_shape=None, use_locking=None, name=None)
Update 'ref' by assigning 'value' to it.
This operation outputs a Tensor that holds the new value of 'ref' after 
the value has been assigned. This makes it easier to chain operations  
that need to use the reset value.  
Args:
  ref: A mutable `Tensor`.  
	Should be from a `Variable` node. May be uninitialized.  
  value: A `Tensor`. Must have the same type as `ref`.  
    The value to be assigned to the variable.  
  validate_shape: An optional `bool`. Defaults to `True`.  
    If true, the operation will validate that the shape  
    of 'value' matches the shape of the Tensor being assigned to.  If false,  
    'ref' will take on the shape of 'value'.  
  use_locking: An optional `bool`. Defaults to `True`.  
    If True, the assignment will be protected by a lock;  
    otherwise the behavior is undefined, but may exhibit less contention.  
  name: A name for the operation (optional).  
Returns:
  A `Tensor` that will hold the new value of 'ref' after  
  the assignment has completed.    

该函数的作用是将一个要分配给变量的值value赋予被赋值的变量ref,用于tensorflow各个参数的变量赋值。

例子

该例子将举例如何进行变量之间的数据赋值和如何进行集合间的数据赋值。

import tensorflow as tf;  
import numpy as np;  
c1 = ['c1', tf.GraphKeys.GLOBAL_VARIABLES]
c2 = ['c2', tf.GraphKeys.GLOBAL_VARIABLES]
#常量初始化器
v1_cons = tf.get_variable('v1_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(), collections = c1)
v2_cons = tf.get_variable('v2_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(9), collections = c1)
#正太分布初始化器
v1_nor = tf.get_variable('v1_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5), collections = c2)
v2_nor = tf.get_variable('v2_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5), collections = c2)
assign1 = tf.assign(v1_cons,v2_cons)    #将v2_cons赋予v1_cons
c1_get = tf.get_collection('c1')        #获得c1集合
c2_get = tf.get_collection('c2')        #获得c2集合
assign2 = [tf.assign(cg1,cg2) for cg1,cg2 in zip(c1_get,c2_get) ]   #将c2赋予c1
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print("v1_cons:",sess.run(v1_cons))
    print("v2_cons:",sess.run(v2_cons))
    print(sess.run(assign1))            #显示赋值后的结果
    print("将v2_cons赋予v1_cons:",sess.run(v1_cons))
    print("c1_get_collection:",sess.run(c1_get))
    print("c2_get_collection:",sess.run(c2_get))
    print(sess.run(assign2))            #显示赋值后的结果
    print("将c2赋予c1:",sess.run(c1_get))

其输出为:

v1_cons: [[0. 0. 0. 0.]]
v2_cons: [[9. 9. 9. 9.]]
[[9. 9. 9. 9.]]
将v2_cons赋予v1_cons: [[9. 9. 9. 9.]]
c1_get_collection: [array([[9., 9., 9., 9.]], dtype=float32), array([[9., 9., 9., 9.]], dtype=float32)]
c2_get_collection: [array([[-3.9746916, -7.5332146,  2.4480317, -1.3282107]], dtype=float32), array([[10.687443 ,  3.6653206,  1.7079141, -4.524155 ]], dtype=float32)]
[array([[-3.9746916, -7.5332146,  2.4480317, -1.3282107]], dtype=float32), array([[10.687443 ,  3.6653206,  1.7079141, -4.524155 ]], dtype=float32)]
将c2赋予c1: [array([[-3.9746916, -7.5332146,  2.4480317, -1.3282107]], dtype=float32), array([[10.687443 ,  3.6653206,  1.7079141, -4.524155 ]], dtype=float32)]

以上就是python人工智能tensorflow函数tf.assign使用方法的详细内容,更多关于tensorflow函数tf.assign的资料请关注Devmax其它相关文章!

python人工智能tensorflow函数tf.assign使用方法的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 如何在iPhone应用程序中集成SIRI?

    我正在开发一款iPad应用程序.我想在其中集成SIRI功能.所以,请指导我研究这个问题.其实我不知道如何开始.谢谢,CP解决方法直到现在苹果还没有发布siri的api用于第三方应用程序.如果您正在寻找文本到语音,语音到文本功能.有很多外部api像:>Nuance–Dragon>ispeech>OpenEars还有很多其他的api.OpenEars是一个开源离线api,另外两个是付费和在线的.

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. android – 是否有任何Google Now API可以将我们自己的应用程序集成到现在?

    如何向Google即时提供我的应用数据的信息或卡片?解决方法Google即时API仅适用于向Google注册其应用的用户,它是私有的.谷歌控制哪些卡将在他们的谷歌即时应用程序上显示.因此,您需要与Google联系并注册您的应用以获取NowAPI,然后您可以构建自己的Now卡.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部