python脚本性能分析

首先使用cd进入需要测试的脚本文件对应的目录,然后再使用如下代码完成对脚本的性能测试。

# enter the directory of document
cd (file directory)
# use pdb library for debuging
python -m cProfile test.py

我们可以看到我们获取到了每一步操作所需要的时间。

对于如何测试单行代码运行时间,可以看这篇python 代码运行时间获取方式(超链接点击跳转)。

python性能分析技巧

当我们开始精通编程语言时,我们不仅希望实现最终的编程目标,而且还希望可以使我们的程序更高效。

在本文中,我们将学习一些Ipython的命令,这些命令可以帮助我们对Python代码进行时间分析。

注意,在本教程中,我建议使用Anaconda。

1.分析一行代码

要检查一行python代码的执行时间,请使用**%timeit**。下面是一个简单的例子来了解它的工作原理:

#### magics命令%timeit的简单用法%timeit [num for num in range(20)]
#### 输出1.08 µs ± 43 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

主要注意事项:

  • 在要分析的代码行之前使用%timeit
  • 它返回代码运行的平均值和标准偏差。在上面的示例中,执行了7次,每次执行对该代码循环100万次(默认行为),这需要平均1.08微秒和43纳秒的标准偏差。
  • 在调用magic命令时,可以自定义运行和循环的数量,示例如下:
#### 在%timeit magic命令中自定义运行和循环数%timeit -r5 -n100 [num for num in range(20)]
1.01 µs ± 5.75 ns per loop (mean ± std. dev. of 5 runs, 100 loops each)

使用命令选项-r和-n,分别表示执行次数和循环次数,我们将时间配置文件操作定制为执行5次和循环100次。

2.分析多行代码

本节向前迈进了一步,并解释了如何分析完整的代码块。通过对%timeit magic命令进行一个小的修改,将单百分比(%)替换为双百分比(%%),就可以分析一个完整的代码块。以下为示例演示,供参考:

#### 使用timeblock%%代码分析%%timeit -r5 -n1000for i in range(10):    n = i**2    m = i**3    o = abs(i)
#### 输出10.5 µs ± 226 ns per loop (mean ± std. dev. of 5 runs, 1000 loops each)

可以观察到for循环的平均执行时间为10.5微秒。请注意,命令选项-r和-n分别用于控制执行次数和循环次数。

3.代码块中的每一行代码进行时间分析

到目前为止,我们只在分析一行代码或代码块时查看摘要统计信息,如果我们想评估代码块中每一行代码的性能呢?使用Line_profiler 。

Line_profiler 包可用于对任何函数执行逐行分析。要使用line_profiler软件包,请执行以下步骤:

安装—Line_profiler 包可以通过简单的调用pip或conda Install来安装。如果使用的是针对Python的anaconda发行版,建议使用conda安装

#### 安装line_profiler软件包conda install line_profiler

加载扩展—一旦安装,你可以使用IPython来加载line_profiler:

#### 加载line_profiler的Ipython扩展%load_ext line_profiler

时间分析函数—加载后,使用以下语法对任何预定义函数进行时间分析

%lprun -f function_name_only function_call_with_arguments

语法细节:

  • 对line_profiler的调用以关键字%lprun开始,后跟命令选项-f
  • 命令选项之后是函数名,然后是函数调用

在本练习中,我们将定义一个接受高度(以米为单位)和重量(以磅为单位)列表的函数,并将其分别转换为厘米和千克。

#### 定义函数def conversion(ht_mtrs, wt_lbs ):    ht_cms = [ht*100 for ht in ht_mtrs]    wt_kgs = [wt*.4535 for wt in wt_lbs]
#### 定义高度和重量列表:ht = [5,5,4,7,6]wt = [108, 120, 110, 98]
#### 使用line_profiler分析函数%lprun -f conversion conversion(ht,wt)
---------------------------------------------------------------#### 输出Total time: 1.46e-05 s
File: <ipython-input-13-41e195af43a9>
Function: conversion at line 2
Line #      Hits         Time  Per Hit   % Time  Line Contents==============================================================     2       1        105.0    105.0     71.9      ht_cms = [ht*100 for ht in ht_mtrs]     3       1         41.0     41.0     28.1      wt_kgs = [wt*.4535 for wt in wt_lbs]

输出详细信息:

  • 以14.6微秒为单位(参考第一行输出)

生成的表有6列:

  • 第1列(行#)—代码的行号(请注意,第#1行是故意从输出中省略的,因为它只是函数定义语句)
  • 第2列(命中)—调用该行的次数
  • 第3列(时间)—在代码行上花费的时间单位数(每个时间单位为14.6微秒)
  • 第4列(每次命中平均时间)—第3列除以第2列
  • 第5列(%Time)—在所花费的总时间中,花在特定代码行上的时间百分比是多少
  • 第6列(内容)—代码行的内容

你可以清楚地看到,高度从米到厘米的转换几乎占了总时间的72%。

利用每一行代码的执行时间,我们可以部署策略来提高代码的效率。以上为个人经验,希望能给大家一个参考,也希望大家多多支持Devmax。

python中的脚本性能分析的更多相关文章

  1. 解析html5 canvas实现背景鼠标连线动态效果代码

    流行的动态背景连线特效。今天小编通过实例代码给大家解析html5 canvas实现背景鼠标连线动态效果,感兴趣的朋友一起看看吧

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部