Tensorboard详解

该类在存放在keras.callbacks模块中。拥有许多参数,主要的参数如下:

1、log_dir: 用来保存Tensorboard的日志文件等内容的位置

2、histogram_freq: 对于模型中各个层计算激活值和模型权重直方图的频率。

3、write_graph: 是否在 TensorBoard 中可视化图像。

4、write_grads: 是否在 TensorBoard 中可视化梯度值直方图。

5、batch_size: 用以直方图计算的传入神经元网络输入批的大小。

6、write_images: 是否在 TensorBoard中将模型权重以图片可视化。

7、update_freq: 常用的三个值为’batch’ 、 ‘epoch’ 或 整数。当使用 ‘batch’ 时,在每个 batch 之后将损失和评估值写入到 TensorBoard 中。 ‘epoch’ 类似。如果使用整数,会在每一定个样本之后将损失和评估值写入到 TensorBoard 中。

默认值如下:

log_dir='./logs',  # 默认保存在当前文件夹下的logs文件夹之下
histogram_freq=0,
batch_size=32,
write_graph=True,  #默认是True,默认是显示graph的。
write_grads=False,
write_images=False,
update_freq='epoch'

使用例子

以手写体为例子,我们打开histogram_freq和write_grads,也就是在Tensorboard中保存权值直方图和梯度直方图。

打开CMD,利用tensorboard --logdir=logs生成tensorboard观测网页。

1、loss和acc

2、权值直方图

3、梯度直方图

实现代码

import numpy as np
from keras.layers import Input, Dense, Dropout, Activation,Conv2D,MaxPool2D,Flatten
from keras.datasets import mnist
from keras.models import Model
from keras.utils import to_categorical
from keras.callbacks import TensorBoard
if __name__=="__main__":
    (x_train,y_train),(x_test,y_test) = mnist.load_data()
    x_train=np.expand_dims(x_train,axis=-1)
    x_test=np.expand_dims(x_test,axis=-1)
    y_train=to_categorical(y_train,num_classes=10)
    y_test=to_categorical(y_test,num_classes=10)
    batch_size=128
    epochs=10
    inputs = Input([28,28,1])
    x = Conv2D(32, (5,5), activation='relu')(inputs)
    x = Conv2D(64, (5,5), activation='relu')(x)   
    x = MaxPool2D(pool_size=(2,2))(x)
    x = Flatten()(x)    
    x = Dense(128, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = Dense(10, activation='softmax')(x)
    model = Model(inputs,x)
    model.compile(loss='categorical_crossentropy', optimizer="adam",metrics=['acc']) 
    Tensorboard= TensorBoard(log_dir="./model", histogram_freq=1,write_grads=True)
    history=model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, shuffle=True, validation_split=0.2,callbacks=[Tensorboard])

以上就是tensorflow可视化Keras框架中Tensorboard使用示例的详细内容,更多关于Keras Tensorboard可视化的资料请关注Devmax其它相关文章!

tensorflow可视化Keras框架中Tensorboard使用示例的更多相关文章

  1. 如何在Xcode 8中启用Visual Memory Debugger?

    我将项目从以前版本的Xcode迁移到Xcode8.我想要的是使用新的可视化内存调试器.它可用于新项目,但在我导入的项目中完全缺少.为什么是这样?

  2. Swift - 继承UIView实现自定义可视化组件附记分牌样例

    在iOS开发中,如果创建一个自定义的组件通常可以通过继承UIView来实现。下面以一个记分牌组件为例,演示了组件的创建和使用,以及枚举、协议等相关知识的学习。效果图如下:组件代码:scoreView.swift123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051importUIKitenumscoreType{caseCommon//普通分数面板Best//最高分面板}pr

  3. 使用自动布局可视化格式与Swift?

    我一直在试图使用AutolayoutVisualFormatLanguageinSwift,使用NSLayoutConstraint.constraintsWithVisualFormat。这里有一些例子,没有什么有用的代码,但就我可以告诉应该让类型检查器快乐:但是,这会触发编译器错误:“Cannotconverttheexpression’stype‘[AnyObject]!’totype‘St

  4. Instruments Swift教程:开始

    准备进入Instruments的精彩世界吧!你会发现Instruments可以让调试问题变得轻松的多!在指定的时间间隔上,Instruments会停止app执行并抽取每个线程上的栈帧记录。此外,Xcode9beta中使用模拟器进行Instrument也会导致一些问题。这会打开一个新的Instruments文档。但是,首先你应该看一下Instruments的当前报告。在当前TimeProfiler当中,只有一次instrument,因此只有一条轨迹。它显示了这次instrument的主要内容。

  5. Android – 如何创建家谱图(可视化)

    有大量的家庭树应用程序,但由于某种原因,我找不到如何为Android应用程序创建一个的示例.我是否使用画布,是否有图表库?

  6. 如何在Android平台上使用Tensorflow?

    谷歌为开发者提供了TENSORFLOW开源软件.有什么方法可以在Android上使用它吗?

  7. android – GpsSatellite.getSnr() – 值范围是多少?

    我正在构建一个Sat-View,为可用的卫星及其信号强度绘制一个小条形图.javadoc没有说明SNR的预期值范围.NMEA-Standard表示0-99,但即使在最佳条件下,我的G1也没有达到该值.我还读到不同的制造商对SNR使用不同的值范围,对于Android设备也是如此吗?或者该平台上是否有统一的价值范围,如果是,它是什么?文档中缺少信息让我怀疑我只是从驱动程序中获得了“原始”SNR,在这种情况下我想知道:您认为什么是可视化未知值范围的最佳方法条形图?解决方法你找到了答案吗?

  8. 直接在Android NDK端使用tensorflow(不使用JAVA api)

    如何在Android上使用Capis构建和链接tensorflow库.你能指导我吗?

  9. 是否有可能在Android上训练tensorflow?

    似乎没有CAPI来训练张量流图并保存到pb.so,在Android平台上有什么办法吗?我可以在Android设备上使用pythonAPI构建tensorflow工作区吗?

  10. Python可视化神器pyecharts之绘制地理图表练习

    这篇文章主要介绍了Python可视化神器pyecharts之绘制地理图表,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部