图像融合

按照一定的比例将两张图片融合在一起

addWeighted()方法:

  • 参数1第一张图片矩阵
  • 参数2第一张图片矩阵的权重
  • 参数3第二张图片矩阵
  • 参数4第二张图片矩阵的权重
  • 融合之后的偏移量

进行叠加的两张图片宽高应该相同

叠加之后的像素偏移值如果填的话不要填太大,超过255会导致图像偏白

import cv2
import cv2 as cv

img = cv.imread("img/lena.jpg")
tony = cv.imread("img/tony.jpg", )

# 修改lena图片的宽高  融合图像之前两个图片的宽高要保持一样
height, width = img.shape[0:2]
new_height = int(height * 1.5)
new_width = int(width * 2)
new_img = cv2.resize(img, (new_width, new_height))

# 进行叠加时的插值
dst = cv.addWeighted(new_img, 0.5, tony, 0.5, 0)
cv.imshow("dst", dst)

cv.waitKey(0)
cv.destroyAllWindows()

灰度处理

一张彩色图片通常是由BGR三个通道叠加而成

为了便于图像特征识别,我们通常会将一张彩色图片转成灰度图片来进行分析,当我们转成灰色图片之后,图片中边缘,轮廓特征仍然是能够清晰看到的,况且在这种情况下我们仅需要对单一通道进行分析,会简化很多操作

1.前面说的可以读取图片时以灰度的方式读取

import cv2
img = cv2.imread("img/lena.jpg", cv.IMREAD_GRAYSCALE)

2.BGR转灰度图

import cv2

img = cv2.imread("img/lena.jpg", cv.IMREAD_COLOR)
# 将原图的所有颜色转成灰色
dstImg = cv2.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow("dstImg", dstImg)
cv.waitKey(0)

颜色反转

灰度反转

灰度图中每一个像素点都是0~255组成,如果一个像素点为100,反转之后就是255 - 100 = 155

import cv2 as cv

img = cv.imread("img/lena.jpg", cv.IMREAD_COLOR)
# 将原图的所有颜色转成灰色
dstImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 获取高度和宽度
height, width = dstImg.shape[0:2]
# 遍历每一个像素点
for row in range(height):
    for col in range(width):
        # 255 - 每一个像素点 = 反转后的颜色
        dstImg[row, col] = 255 - dstImg[row, col]

cv.imshow("dstImg", dstImg)
cv.waitKey(0)

彩色反转

一样的道理,彩色图片有BGR三个颜色通道,每一个颜色都取反

255 - B = B1 255 - G = G1 255 - R = R1

import cv2 as cv

img = cv.imread("img/lena.jpg", cv.IMREAD_COLOR)
# 将原图的所有颜色转成灰色
dstImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 获取高度和宽度
height, width = dstImg.shape[0:2]
# 遍历每一个像素点
for row in range(height):
    for col in range(width):
        # 255 - 每一个像素点 = 反转后的颜色
        dstImg[row, col] = 255 - dstImg[row, col]

cv.imshow("dstImg", dstImg)
cv.waitKey(0)

马赛克效果

马赛克指现行广为使用的一种图像(视频)处理手段,此手段将影像特定区域的色阶细节劣化并造成色块打乱的效果,因为这种模糊看上去有一个个的小格子组成,便形象的称这种画面为马赛克。其目的通常是使之无法辨认。

import cv2

# 读取图片  cv2读取出的图片都是一个二维矩阵
img = cv2.imread('./img/lena.jpg', cv2.IMREAD_COLOR)
# 切片 两个点的坐标可以截取图片
# x1:x2,y1:y2  截取眼睛部分
img1 = img[180:250, 180:310]
# 获取到高度和宽度
height, width = img1.shape[0:2]
# 遍历每一个像素点
for row in range(height):
    for col in range(width):
        # 如果正好为10的倍数的行并且是10的倍数的列
        if row % 10 == 0 and col % 10 == 0:
            # 获取到这个像素点的bgr三原色
            b, g, r = img1[row, col]
            # 遍历这个像素点旁边的100个像素点 都等于中间这个像素点
            for i in range(10):
                for j in range(10):
                    img1[row + i, col + j] = b, g, r

cv2.imshow('img', img)

cv2.imwrite('msk_lena.jpg', img)
cv2.waitKey()

毛玻璃效果

毛玻璃效果和马赛克效果相似,马赛克是:比如4*4的像素点内所有像素点都与第一个像素点颜色一样,毛玻璃效果为遍历每一个像素点,在该像素点附近随机选取一个颜色值替换。

偏移量越大越模糊

import random

import cv2
import numpy as np

img = cv2.imread('./lena.jpg')
height, width = img.shape[0:2]
new_img = np.zeros_like(img, np.uint8)
# 定义偏移量
offset = 6
# 遍历每一个像素点
for row in range(height):
    for col in range(width):
        # 定义不超过1的随机值与offset相乘
        index = int(random.random() * offset)
        # 获取到随机完的行号和列号   如果不超过总高度就使用随机的行  如果超过就使用高度-1
        random_row = row + index if row + index < height else height - 1
        random_col = col + index if col + index < width else width - 1
        # 赋值颜色
        b, g, r = img[random_row, random_col]
        new_img[row, col] = b, g, r

cv2.imshow('img', img)
cv2.imshow('new_img', new_img)

cv2.waitKey()

浮雕效果

浮雕效果公式:new_gray = gray0-gray1+120

加120是为了增加灰度值

import cv2
import numpy as np

img = cv2.imread('./lena.jpg')
# 获取高度宽度
height, width = img.shape[0:2]
# 转为灰度图
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

new_img = np.zeros_like(gray_img, np.uint8)
# 遍历每一个像素点
for row in range(height):
    # 因为要获取相邻的像素点 防止下标越界提前遍历的时候宽度-1
    for col in range(width - 1):
        # 获取像素点的像素值
        gray0 = gray_img[row, col]
        # 获取相邻像素点的像素值
        gray1 = gray_img[row, col + 1]
        # 使用浮雕效果的公式
        new_gray = int(gray0) - int(gray1) + 120
        # 判断新的灰度值是否越界
        if new_gray > 255:
            new_gray = 255
        elif new_gray < 0:
            new_gray = 0
        # 赋值
        new_img[row, col] = new_gray

cv2.imshow('img', img)
cv2.imshow('new_img', new_img)

cv2.waitKey()

到此这篇关于Python+OpenCV实现六种常用图像特效的文章就介绍到这了,更多相关Python OpenCV图像特效内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python+OpenCV实现六种常用图像特效的更多相关文章

  1. 基于EJB技术的商务预订系统的开发

    用EJB结构开发的应用程序是可伸缩的、事务型的、多用户安全的。总的来说,EJB是一个组件事务监控的标准服务器端的组件模型。基于EJB技术的系统结构模型EJB结构是一个服务端组件结构,是一个层次性结构,其结构模型如图1所示。图2:商务预订系统的构架EntityBean是为了现实世界的对象建造的模型,这些对象通常是数据库的一些持久记录。

  2. js中‘!.’是什么意思

  3. InnoDB 和 MyISAM 引擎恢复数据库,使用 .frm、.ibd文件恢复数据库

  4. Error: Cannot find module ‘node:util‘问题解决

    控制台 安装 Vue-Cli 最后一步出现 Error: Cannot find module 'node:util' 问题解决方案1.问题C:\Windows\System32>cnpm install -g @vue/cli@4.0.3internal/modules/cjs/loader.js:638 throw err; &nbs

  5. yarn的安装和使用(全网最详细)

    一、yarn的简介:Yarn是facebook发布的一款取代npm的包管理工具。二、yarn的特点:速度超快。Yarn 缓存了每个下载过的包,所以再次使用时无需重复下载。 同时利用并行下载以最大化资源利用率,因此安装速度更快。超级安全。在执行代码之前,Yarn 会通过算法校验每个安装包的完整性。超级可靠。使用详细、简洁的锁文件格式和明确的安装算法,Yarn 能够保证在不同系统上无差异的工作。三、y

  6. 前端环境 本机可切换node多版本 问题源头是node使用的高版本

    前言投降投降 重头再来 重装环境 也就分分钟的事 偏要折腾 这下好了1天了 还没折腾出来问题的源头是node 使用的高版本 方案那就用 本机可切换多版本最终问题是因为nodejs的版本太高,导致的node-sass不兼容问题,我的node是v16.14.0的版本,项目中用了"node-sass": "^4.7.2"版本,无法匹配当前的node版本根据文章的提

  7. 宝塔Linux的FTP连接不上的解决方法

    宝塔Linux的FTP连接不上的解决方法常见的几个可能,建议先排查。1.注意内网IP和外网IP2.检查ftp服务是否启动 (面板首页即可看到)3.检查防火墙20端口 ftp 21端口及被动端口39000 - 40000是否放行 (如是腾讯云/阿里云等还需检查安全组)4.是否主动/被动模式都不能连接5.新建一个用户看是否能连接6.修改ftp配置文件 将ForcePassiveIP前面的#去掉 将19

  8. 扩展element-ui el-upload组件,实现复制粘贴上传图片文件,带图片预览功能

  9. 微信小程序canvas实现水平、垂直居中效果

    这篇文章主要介绍了小程序中canvas实现水平、垂直居中效果,本文图文实例代码相结合给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下

  10. 使用HTML5做的导航条详细步骤

    这篇文章主要介绍了用HTML5做的导航条详细步骤,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部