一、安装matplotlib

1)由于已安装anaconda,可直接打开anaconda prompt,再用命令pip install matplotlib进行安装,因镜像问题,可能较慢,建议第2种方式。

2)访问https://pypi.org/project/matplotlib/#files,并查找与你使用的Python版本匹配的wheel文件(扩展名为.whl的文件),比如与python3.9版本相应的matplotlib-3.5.1-cp39-cp39-win_amd64.whl放在目录G:\develop\python下,(或者你自己所建目录)

打开anaconda prompt,再用命令pip install G:\develop\python\matplotlib-3.5.1-cp39-cp39-win_amd64.whl(注意目录要保持一致) 执行完成即可。

二、测试 matplotlib

打开anaconda prompt 先输入python,再输入 import matplotlib,如图所示,没有出现任何错误消息,就说明系统安装成功。

三、 绘制简单的折线

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

squares = [1,4,9,16,25,36,49,64,81,100]  #定义一个数组

plt.plot(squares, linewidth=5)# 设置图表标题,并给坐标轴加上标签和 参数 linewidth 决定了绘制的线条的粗细
plt.title("Square Numbers", fontsize=24)#设置标题和字体大小
plt.xlabel("Value", fontsize=14)  #  x轴标签,和字体大小
plt.ylabel("Square of Value", fontsize=14)  #  y轴标签,和字体大小
plt.tick_params(axis='both', labelsize=14) # 设置刻度标记的大小,函数 tick_params() 设置刻度的样式
plt.show()

这样就完成一个简单的折线图,运行效果如下:

注:如果运行过程中,出现图中红色方框所示警告,需要重新设置spyder中Tools,如下图所示:

四、使用 scatter() 绘制散点图并设置其样式

1、要绘制单个点

可使用函数 scatter() ,并向它传递一对x和y坐标,它将在指定位置绘制一个点:

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

plt.scatter(2, 4, s=200) #调用了scatter(),并使用实参s设置了绘制图形时使用的点的尺寸,位置为2,4

plt.title("Square Numbers", fontsize=24) # 设置图表标题并给坐标轴加上标签
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()

2、要绘制系列点

绘制系列点,只需要给出系列点的坐标即可。我们将上述代码中plt.scatter(2, 4, s=200)的2,4分别用两个数列代替。

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

x_values = [1, 2, 3, 4, 5]  #X轴的数列
y_values = [1, 3,6, 9, 12]  #y轴的数列
plt.scatter(x_values, y_values, s=100) #调用了scatter(),并使用实参s设置了绘制图形时使用的点的尺寸  plt.title(" series Numbers", fontsize=24) # 设置图表标题并给坐标轴加上标签 plt.xlabel("Value", fontsize=14) plt.ylabel("Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) plt.show()

运行结果如下:

3、自动计算数据

像上述手动输入点数,或数列,都是比较慢的处理方式 ,下面用for循环来替代手工输入。

可以先将x_values定义为一个数列,数值在一定的范围,比如1-1000,而对应的y_values也是一个数列,按一定的方式(函数)产生。于是,可以将上述代码修改为如下:

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

x_values = list(range(1, 1001))  #定义一个1-1000的数列,
y_values = [x**2 for x in x_values]  #定义Y值的生成方式。

plt.scatter(x_values, y_values, s=4) #调用了scatter(),并使用实参s设置了绘制图形时使用的点的尺寸

plt.title(" series Numbers", fontsize=24) # 设置图表标题并给坐标轴加上标签
plt.xlabel("Value", fontsize=14)
plt.ylabel("Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=10)
plt.axis([1,1100,1,1100000]) #注意一下axis的参数
plt.show()

运行结果如下:

matplotlib中的点默认为蓝色点和黑色轮廓,如上述三图所示,其中最后一图因为点较多,且连在一起,像是一条曲线,为区别不同的点,可以对点分别不同的颜色。

只需再配置几个参数 ,就可以删除黑色轮廓,和修改点的颜色。

plt.scatter(x_values, y_values, edgecolor='none', s=40),其中edgecolor='none'表示将黑色轮廓删除

修改数据点的颜色,可向 scatter() 传递参数 c ,并将其设置为要使用的颜色的名称,如下:

plt.scatter(x_values, y_values, c='red', edgecolor='none', s=40) # 将颜色修改为红色。

颜色映射(colormap)

颜色映射是一系列颜色,从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律

plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,edgecolor='none', s=40) 
#调用了scatter()参数 c 设置成了一个y值列表,并使用参数 cmap 告诉 pyplot 使用哪个颜色映射,
# 将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色

具体运行效果如下:

注意,要了解所有相关颜色的映射,可访问官网,单击Examples,向下滚动到Color Examples,再单击colormaps_reference进行参考。

4、自动保存图表

方法 plt.show() 是显示图表

要让程序自动将图表保存到文件中,可调用 plt.savefig() 方法

plt.savefig('scatter.png', bbox_inches='tight')  #保存为scatter.png的图片文件

到此这篇关于Python+matplotlib实现简单曲线的绘制的文章就介绍到这了,更多相关Python matplotlib绘制曲线内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python+matplotlib实现简单曲线的绘制的更多相关文章

  1. 基于EJB技术的商务预订系统的开发

    用EJB结构开发的应用程序是可伸缩的、事务型的、多用户安全的。总的来说,EJB是一个组件事务监控的标准服务器端的组件模型。基于EJB技术的系统结构模型EJB结构是一个服务端组件结构,是一个层次性结构,其结构模型如图1所示。图2:商务预订系统的构架EntityBean是为了现实世界的对象建造的模型,这些对象通常是数据库的一些持久记录。

  2. js中‘!.’是什么意思

  3. InnoDB 和 MyISAM 引擎恢复数据库,使用 .frm、.ibd文件恢复数据库

  4. Error: Cannot find module ‘node:util‘问题解决

    控制台 安装 Vue-Cli 最后一步出现 Error: Cannot find module 'node:util' 问题解决方案1.问题C:\Windows\System32>cnpm install -g @vue/cli@4.0.3internal/modules/cjs/loader.js:638 throw err; &nbs

  5. yarn的安装和使用(全网最详细)

    一、yarn的简介:Yarn是facebook发布的一款取代npm的包管理工具。二、yarn的特点:速度超快。Yarn 缓存了每个下载过的包,所以再次使用时无需重复下载。 同时利用并行下载以最大化资源利用率,因此安装速度更快。超级安全。在执行代码之前,Yarn 会通过算法校验每个安装包的完整性。超级可靠。使用详细、简洁的锁文件格式和明确的安装算法,Yarn 能够保证在不同系统上无差异的工作。三、y

  6. 前端环境 本机可切换node多版本 问题源头是node使用的高版本

    前言投降投降 重头再来 重装环境 也就分分钟的事 偏要折腾 这下好了1天了 还没折腾出来问题的源头是node 使用的高版本 方案那就用 本机可切换多版本最终问题是因为nodejs的版本太高,导致的node-sass不兼容问题,我的node是v16.14.0的版本,项目中用了"node-sass": "^4.7.2"版本,无法匹配当前的node版本根据文章的提

  7. 宝塔Linux的FTP连接不上的解决方法

    宝塔Linux的FTP连接不上的解决方法常见的几个可能,建议先排查。1.注意内网IP和外网IP2.检查ftp服务是否启动 (面板首页即可看到)3.检查防火墙20端口 ftp 21端口及被动端口39000 - 40000是否放行 (如是腾讯云/阿里云等还需检查安全组)4.是否主动/被动模式都不能连接5.新建一个用户看是否能连接6.修改ftp配置文件 将ForcePassiveIP前面的#去掉 将19

  8. 扩展element-ui el-upload组件,实现复制粘贴上传图片文件,带图片预览功能

  9. 微信小程序canvas实现水平、垂直居中效果

    这篇文章主要介绍了小程序中canvas实现水平、垂直居中效果,本文图文实例代码相结合给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下

  10. 使用HTML5做的导航条详细步骤

    这篇文章主要介绍了用HTML5做的导航条详细步骤,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部